cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142595 Triangle T(n,k) = 2*T(n-1, k-1) + 2*T(n-1, k), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 10, 10, 1, 1, 22, 40, 22, 1, 1, 46, 124, 124, 46, 1, 1, 94, 340, 496, 340, 94, 1, 1, 190, 868, 1672, 1672, 868, 190, 1, 1, 382, 2116, 5080, 6688, 5080, 2116, 382, 1, 1, 766, 4996, 14392, 23536, 23536, 14392, 4996, 766, 1
Offset: 1

Views

Author

Roger L. Bagula, Sep 22 2008

Keywords

Comments

This triangle is dominated by the Eulerian numbers A008292.

Examples

			Triangle begins as:
  1;
  1,   1;
  1,   4,    1;
  1,  10,   10,     1;
  1,  22,   40,    22,     1;
  1,  46,  124,   124,    46,     1;
  1,  94,  340,   496,   340,    94,     1;
  1, 190,  868,  1672,  1672,   868,   190,    1;
  1, 382, 2116,  5080,  6688,  5080,  2116,  382,   1;
  1, 766, 4996, 14392, 23536, 23536, 14392, 4996, 766, 1;
		

Crossrefs

Cf. A008292, A047849 (row sums), A119258.

Programs

  • Magma
    function T(n,k)
      if k eq 1 or k eq n then return 1;
      else return 2*(T(n-1, k-1) + T(n-1, k));
      end if; return T;
    end function;
    [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 13 2021
    
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==1 || k==n, 1, 2*(T[n-1, k-1] +T[n-1, k])];
    Table[T[n, k], {n, 10}, {k, n}]//Flatten (* modified by G. C. Greubel, Apr 13 2021 *)
    a[0] = {1}; a[1] = {1, 1};
    a[n_]:= a[n]= 2*Join[a[n-1], {-1/2}] + 2*Join[{-1/2}, a[n-1]];
    Table[a[n], {n,0,10}]//Flatten (* Roger L. Bagula, Dec 09 2008 *)
  • Sage
    @CachedFunction
    def T(n,k): return 1 if k==1 or k==n else 2*(T(n-1, k-1) + T(n-1, k))
    flatten([[T(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 13 2021

Formula

Sum_{k=0..n} T(n, k) = (4^(n-1) + 2)/3 = A047849(n-1).

Extensions

Edited by N. J. A. Sloane, Dec 11 2008