A142595 Triangle T(n,k) = 2*T(n-1, k-1) + 2*T(n-1, k), read by rows.
1, 1, 1, 1, 4, 1, 1, 10, 10, 1, 1, 22, 40, 22, 1, 1, 46, 124, 124, 46, 1, 1, 94, 340, 496, 340, 94, 1, 1, 190, 868, 1672, 1672, 868, 190, 1, 1, 382, 2116, 5080, 6688, 5080, 2116, 382, 1, 1, 766, 4996, 14392, 23536, 23536, 14392, 4996, 766, 1
Offset: 1
Examples
Triangle begins as: 1; 1, 1; 1, 4, 1; 1, 10, 10, 1; 1, 22, 40, 22, 1; 1, 46, 124, 124, 46, 1; 1, 94, 340, 496, 340, 94, 1; 1, 190, 868, 1672, 1672, 868, 190, 1; 1, 382, 2116, 5080, 6688, 5080, 2116, 382, 1; 1, 766, 4996, 14392, 23536, 23536, 14392, 4996, 766, 1;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Programs
-
Magma
function T(n,k) if k eq 1 or k eq n then return 1; else return 2*(T(n-1, k-1) + T(n-1, k)); end if; return T; end function; [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 13 2021
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==1 || k==n, 1, 2*(T[n-1, k-1] +T[n-1, k])]; Table[T[n, k], {n, 10}, {k, n}]//Flatten (* modified by G. C. Greubel, Apr 13 2021 *) a[0] = {1}; a[1] = {1, 1}; a[n_]:= a[n]= 2*Join[a[n-1], {-1/2}] + 2*Join[{-1/2}, a[n-1]]; Table[a[n], {n,0,10}]//Flatten (* Roger L. Bagula, Dec 09 2008 *)
-
Sage
@CachedFunction def T(n,k): return 1 if k==1 or k==n else 2*(T(n-1, k-1) + T(n-1, k)) flatten([[T(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 13 2021
Formula
Sum_{k=0..n} T(n, k) = (4^(n-1) + 2)/3 = A047849(n-1).
Extensions
Edited by N. J. A. Sloane, Dec 11 2008
Comments