cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142707 Coefficients of derivatives of MacMahon polynomials (A060187): p(x,n)=2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2]; p'(x,n)=(d/dx)p{x,n).

Original entry on oeis.org

1, 6, 2, 23, 46, 3, 76, 460, 228, 4, 237, 3364, 5046, 948, 5, 722, 21086, 70644, 42172, 3610, 6, 2179, 121314, 779169, 1038892, 303285, 13074, 7, 6552, 663224, 7455864, 18700056, 12426440, 1989672, 45864, 8, 19673, 3512680, 65123916, 277653176
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 24 2008

Keywords

Comments

Row sums are:A014479
0, 1, 8, 72, 768, 9600, 138240, 2257920, 41287680, 836075520, 18579456000.

Examples

			{1},
{6, 2},
{23, 46, 3},
{76, 460, 228, 4},
{237, 3364, 5046, 948, 5},
{722, 21086, 70644, 42172, 3610, 6},
{2179, 121314, 779169, 1038892, 303285, 13074, 7},
{6552, 663224, 7455864, 18700056, 12426440, 1989672, 45864, 8},
{19673, 3512680, 65123916, 277653176, 347066470, 130247832, 12294380, 157384, 9},
{59038, 18232282, 534902712, 3627693128, 7635462340, 5441539692, 1248106328, 72929128, 531342, 10}
		

Crossrefs

Programs

  • Mathematica
    Clear[p, x, n, a]; p[x_, n_] = 2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2]; Table[FullSimplify[Expand[D[p[x, n], x]]], {n, 0, 10}]; Table[CoefficientList[FullSimplify[Expand[D[p[x, n], x]]], x], {n, 0, 10}]; Flatten[%]

Formula

p(x,n)=2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2]; p'(x,n)=(d/dx)p{x,n); t(n,m)=Coefficients(p'(x,n)).