cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A147586 a(n) = A142710(n)/2.

Original entry on oeis.org

1, 1, 3, 7, 19, 56, 138, 407, 999, 2851, 7113, 19702, 49954, 135461, 347553, 929567, 2403759, 6374236, 16564458, 43697227, 113896339, 299525051, 782121453, 2053027082, 5366641794, 14071792681, 36807232413, 96449857207, 252375716899, 661078086176, 1730190463338, 4531099045727
Offset: 0

Views

Author

Paul Curtz, Nov 08 2008

Keywords

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else ((-1)^n*Lucas(n) +Lucas(2*n) -(1+(-1)^n)*2^(n-1))/2: n in [0..50]]; // G. C. Greubel, Oct 26 2022
    
  • Mathematica
    LinearRecurrence[{2,7,-12,-11,16,-4}, {1,1,3,7,19,56,138}, 51] (* G. C. Greubel, Oct 26 2022 *)
  • SageMath
    def A147586(n): return ((-1)^n*lucas_number2(n,1,-1) + lucas_number2(2*n,1,-1) - (1 + (-1)^n)*2^(n-1) -int(n==0))/2
    [A147586(n) for n in range(51)] # G. C. Greubel, Oct 26 2022

Formula

From G. C. Greubel, Oct 26 2022: (Start)
a(n) = (1/2)*( (-1)^n*LucasL(n) + LucasL(2*n) - (1 + (-1)^n)*2^(n-1) - [n=0]).
a(n) = 2*a(n-1) + 7*a(n-2) - 12*a(n-3) - 11*a(n-4) + 16*a(n-5) - 4*a(n-6), n >= 7.
G.f.: (1 - x - 6*x^2 + 6*x^3 + 7*x^4 - 2*x^6)/((1 - 4*x^2)*(1 + x - x^2)*(1 - 3*x + x^2)). (End)

Extensions

Terms a(11) onward added by G. C. Greubel, Oct 26 2022
Showing 1-1 of 1 results.