cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142879 a(n) = 5*a(n-3) - a(n-6) with terms 1..6 as 0, 1, 2, 5, 7, 9.

Original entry on oeis.org

0, 1, 2, 5, 7, 9, 25, 34, 43, 120, 163, 206, 575, 781, 987, 2755, 3742, 4729, 13200, 17929, 22658, 63245, 85903, 108561, 303025, 411586, 520147, 1451880, 1972027, 2492174, 6956375, 9448549, 11940723, 33329995, 45270718, 57211441, 159693600
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Clear[a, n]; a[0] = 0; a[1] = 1; a[n_] := a[n] = If[Mod[n, 3] == 0, 2*a[n - 1] + a[n - 2], If[Mod[n, 3] == 1, a[n - 1] + a[n - 2], 2*a[n - 1] - a[n - 2]]]; b = Table[a[n], {n, 0, 50}]
    LinearRecurrence[{0,0,5,0,0,-1},{0,1,2,5,7,9},40] (* Harvey P. Dale, Apr 06 2016 *)
  • PARI
    a=vector(20); a[1]=1; a[2]=2; for(n=3, #a, if(n%3==0, a[n]=2*a[n-1]+a[n-2], if(n%3==1, a[n]=a[n-1]+a[n-2], a[n]=2*a[n-1]-a[n-2]))); concat(0, a) \\ Colin Barker, Jan 30 2016
    
  • PARI
    concat(0, Vec(x^2*(1+2*x+5*x^2+2*x^3-x^4)/(1-5*x^3+x^6) + O(x^50))) \\ Colin Barker, Jan 30 2016

Formula

a(n) = 2*a(n - 1) + a(n - 2) if 3 | n, a(n) = a(n - 1) + a(n - 2) if n = 1 mod 3, and a(n) = 2*a(n - 1) - a(n - 2) if n = 2 mod 3.
G.f.: x^2*(1+2*x+5*x^2+2*x^3-x^4) / (1-5*x^3+x^6). - Colin Barker, Jan 08 2013

Extensions

New name from Colin Barker and Charles R Greathouse IV, Jan 08 2013