A142979 a(1) = 1, a(2) = 3, a(n+2) = 3*a(n+1) + (n+1)^2*a(n).
1, 3, 13, 66, 406, 2868, 23220, 210192, 2116656, 23375520, 281792160, 3673814400, 51599514240, 775673176320, 12440524320000, 211848037632000, 3820318338816000, 72685037892096000, 1455838255452672000
Offset: 1
References
- Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..448
- D. Bump, K. Choi, P. Kurlberg and J. Vaaler, A local Riemann hypothesis, I, Math. Zeit. 233, (2000), 1-19.
Programs
-
Maple
p := n -> 2*n+1: a := n -> n!*p(n)*sum ((-1)^(k+1)/(k*p(k-1)*p(k)), k = 1..n): seq(a(n), n = 1..20)
-
Mathematica
RecurrenceTable[{a[1]==1,a[2]==3,a[n+2]==3a[n+1]+(n+1)^2 a[n]},a,{n,20}] (* Harvey P. Dale, May 20 2012 *)
Formula
a(n) = n!*p(n)*Sum_{k = 1..n} (-1)^(k+1)/(k*p(k-1)*p(k)), where p(n) = 2*n + 1.
Recurrence: a(1) = 1, a(2) = 3, a(n+2) = 3*a(n+1) + (n + 1)^2*a(n).
The sequence b(n):= n!*p(n) satisfies the same recurrence with b(1) = 3, b(2) = 10.
Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(3 + 1^2/(3 + 2^2/(3 + 3^2/(3 + ... + (n-1)^2/3)))), for n >= 2.
Limit_{n -> oo} a(n)/b(n) = 1/(3 + 1^2/(3 + 2^2/(3 + 3^2/(3 + ... + (n-1)^2/(3 + ...))))) = Sum_{k >= 1} (-1)^(k+1)/(k*(4k^2 - 1)) = 1 - log(2).
Thus a(n) ~ c*n*n! as n -> oo, where c = 2*(1 - log(2)).
From Peter Bala, Dec 09 2024: (Start)
E.g.f.: A(x) = (2*x - (1 + x)*log(1 + x))/(1 - x)^2 satisfies the differential equation 1 + (x + 3)*A(x) + (x^2 - 1)*A'(x) = 0 with A(0) = 0.
Sum_{k = 1..n} Stirling_2(n, k) * a(k) = A317057(n+1). (End)
Comments