A142994 Crystal ball sequence for the lattice C_5.
1, 51, 501, 2471, 8361, 22363, 50973, 103503, 192593, 334723, 550725, 866295, 1312505, 1926315, 2751085, 3837087, 5242017, 7031507, 9279637, 12069447, 15493449, 19654139, 24664509, 30648559, 37741809, 46091811, 55858661, 67215511, 80349081
Offset: 0
Examples
a(1) = 51. The origin has norm 0. The 50 lattice points in Z^5 of norm 1 (as defined above) are +-2*e_i, 1 <= i <= 5 and (+- e_i +- e_j), 1 <= i < j <= 5, where e_1, ... , e_5 denotes the standard basis of Z^5. These 50 vectors form a root system of type C_5. Hence the sequence begins 1, 1 + 50 = 51, ... .
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- R. Bacher, P. de la Harpe, and B. Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, Annales de l'Institut Fourier, Tome 49 (1999) no. 3, pp. 727-762.
- R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Magma
[(2*n+1)*(32*n^4+64*n^3+88*n^2+56*n+15)/15: n in [0..30]]; // Vincenzo Librandi, Dec 16 2015
-
Maple
a := n -> (2*n+1)*(32*n^4+64*n^3+88*n^2+56*n+15)/15: seq(a(n), n = 0..20)
-
Mathematica
CoefficientList[Series[(1 + 45 x + 210 x^2 + 210 x^3 + 45 x^4 + x^5)/(1 - x)^6, {x, 0, 33}], x] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1},{1, 51, 501, 2471, 8361, 22363}, 25] (* Vincenzo Librandi, Dec 16 2015 *)
-
Python
A142994_list, m = [], [512, -768, 352, -48, 2, 1] for _ in range(10**2): A142994_list.append(m[-1]) for i in range(5): m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015
Formula
a(n) = (2*n + 1)*(32*n^4 + 64*n^3 + 88*n^2 + 56*n + 15)/15.
a(n) = Sum_{k = 0..5} binomial(10, 2*k)*binomial(n+k, 5).
a(n) = Sum_{k = 0..5} binomial(10, 2*k+1)*binomial(n+k+1/2, 5).
O.g.f.: (1 + 45*x + 210*x^2 + 210*x^3 + 45*x^4 + x^5)/(1 - x)^6 = 1/(1 - x) * T(5, (1 + x)/(1 - x)), where T(n, x) denotes the Chebyshev polynomial of the first kind.
Sum_{n >= 1} 1/(n*a(n-1)*a(n)) = 2*log(2) - 41/30.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6), for n > 5. - Vincenzo Librandi, Dec 16 2015
From Peter Bala, Mar 11 2024: (Start)
Sum_{k = 1..n+1} 1/(k*a(k)*a(k-1)) = 1/(51 - 3/(59 - 60/(75 - 315/(99 - ... - n^2*(4*n^2 - 1)/((2*n + 1)^2 + 2*5^2))))).
E.g.f.: exp(x)*(1 + 50*x + 400*x^2/2! + 1120*x^3/3! + 1280*x^4/4! + 512*x^5/5!).
Note that -T(10, i*sqrt(x)) = 1 + 50*x + 400*x^2 + 1120*x^3 + 1280*x^4 + 512*x^5. See A008310. (End)
Comments