cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142994 Crystal ball sequence for the lattice C_5.

Original entry on oeis.org

1, 51, 501, 2471, 8361, 22363, 50973, 103503, 192593, 334723, 550725, 866295, 1312505, 1926315, 2751085, 3837087, 5242017, 7031507, 9279637, 12069447, 15493449, 19654139, 24664509, 30648559, 37741809, 46091811, 55858661, 67215511, 80349081
Offset: 0

Views

Author

Peter Bala, Jul 18 2008

Keywords

Comments

The lattice C_5 consists of all integer lattice points v = (x_1,...,x_5) in Z^5 such that (x_1 + ... + x_5) is even, equipped with the taxicab type norm ||v|| = (1/2) * (|x_1| + ... + |x_5|). The crystal ball sequence of C_5 gives the number of lattice points v in C_5 with ||v|| <= n for n = 0,1,2,3,... [Bacher et al.].
Partial sums of A019561.

Examples

			a(1) = 51. The origin has norm 0. The 50 lattice points in Z^5 of norm 1 (as defined above) are +-2*e_i, 1 <= i <= 5 and (+- e_i +- e_j), 1 <= i < j <= 5, where e_1, ... , e_5 denotes the standard basis of Z^5. These 50 vectors form a root system of type C_5. Hence the sequence begins 1, 1 + 50 = 51, ... .
		

Crossrefs

Row 5 of A142992. Cf. A019561, A063496, A142993.

Programs

  • Magma
    [(2*n+1)*(32*n^4+64*n^3+88*n^2+56*n+15)/15: n in [0..30]]; // Vincenzo Librandi, Dec 16 2015
  • Maple
    a := n -> (2*n+1)*(32*n^4+64*n^3+88*n^2+56*n+15)/15: seq(a(n), n = 0..20)
  • Mathematica
    CoefficientList[Series[(1 + 45 x + 210 x^2 + 210 x^3 + 45 x^4 + x^5)/(1 - x)^6, {x, 0, 33}], x] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1},{1, 51, 501, 2471, 8361, 22363}, 25] (* Vincenzo Librandi, Dec 16 2015 *)
  • Python
    A142994_list, m = [], [512, -768, 352, -48, 2, 1]
    for _ in range(10**2):
        A142994_list.append(m[-1])
        for i in range(5):
            m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015
    

Formula

a(n) = (2*n + 1)*(32*n^4 + 64*n^3 + 88*n^2 + 56*n + 15)/15.
a(n) = Sum_{k = 0..5} binomial(10, 2*k)*binomial(n+k, 5).
a(n) = Sum_{k = 0..5} binomial(10, 2*k+1)*binomial(n+k+1/2, 5).
O.g.f.: (1 + 45*x + 210*x^2 + 210*x^3 + 45*x^4 + x^5)/(1 - x)^6 = 1/(1 - x) * T(5, (1 + x)/(1 - x)), where T(n, x) denotes the Chebyshev polynomial of the first kind.
Sum_{n >= 1} 1/(n*a(n-1)*a(n)) = 2*log(2) - 41/30.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6), for n > 5. - Vincenzo Librandi, Dec 16 2015
From Peter Bala, Mar 11 2024: (Start)
Sum_{k = 1..n+1} 1/(k*a(k)*a(k-1)) = 1/(51 - 3/(59 - 60/(75 - 315/(99 - ... - n^2*(4*n^2 - 1)/((2*n + 1)^2 + 2*5^2))))).
E.g.f.: exp(x)*(1 + 50*x + 400*x^2/2! + 1120*x^3/3! + 1280*x^4/4! + 512*x^5/5!).
Note that -T(10, i*sqrt(x)) = 1 + 50*x + 400*x^2 + 1120*x^3 + 1280*x^4 + 512*x^5. See A008310. (End)