A143004 a(0) = 0, a(1) = 1, a(n+1) = (2*n+1)*(n^2+n+13)*a(n) - n^6*a(n-1).
0, 1, 45, 4211, 704120, 191875384, 79755181632, 48072816950976, 40372248180436992, 45735898093934800896, 68049684624570789888000, 130036437291331549384704000, 313117351023401464093212672000
Offset: 0
References
- Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..180
Programs
-
Maple
p := n -> (3*n^4+6*n^3+9*n^2+6*n+2)/2: a := n -> n!^3*p(n)*sum (1/(k^3*p(k-1)*p(k)), k = 1..n): seq(a(n), n = 0..14)
-
Mathematica
RecurrenceTable[{a[0]==0,a[1]==1,a[n+1]==(2n+1)(n^2+n+13)a[n]-n^6 a[n-1]}, a,{n,20}] (* Harvey P. Dale, Jan 23 2012 *)
Formula
a(n) = n!^3*p(n)*sum {k = 1..n} 1/(k^3*p(k-1)*p(k)), where p(n) = (3*n^4+6*n^3+9*n^2+6*n+2)/2. Recurrence: a(0) = 0, a(1) = 1, a(n+1) = (2*n+1)*(n^2+n+13)*a(n) - n^6*a(n-1). The sequence b(n):= n!^3*p(n) satisfies the same recurrence with the initial conditions b(0) = 1, b(1) = 13. Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(13- 1^6/(45- 2^6/(95- 3^6/(175-...- (n-1)^6/((2*n-1)*(n^2-n+13)))))), for n >=2. The behavior of a(n) for large n is given by lim n -> infinity a(n)/b(n) = sum {k = 1..inf} 1/(k^3*p(k-1)*p(k)) = 1/(13- 1^6/(45- 2^6/(95- 3^6/(175-...- n^6/((2*n+1)*(n^2+n+13)-...))))) = zeta(3) - (1 + 1/2^3), where the final equality follows from a result of Ramanujan; see [Berndt, Chapter 12, Entry 32(iii) at x = 2].
Comments