cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143018 Triangle read by rows: T(n,k) (n >= 2, k >= 1) is the number of non-crossing connected graphs on n nodes on a circle such that the distance from a fixed node (root) to the next node is k. Rows are indexed 2,3,4,...; columns are indexed 1,2,3, ... .

Original entry on oeis.org

1, 3, 1, 16, 6, 1, 105, 41, 9, 1, 768, 306, 75, 12, 1, 6006, 2422, 630, 118, 15, 1, 49152, 19980, 5394, 1104, 170, 18, 1, 415701, 169941, 47061, 10197, 1755, 231, 21, 1, 3604480, 1479786, 417439, 94116, 17425, 2610, 301, 24, 1
Offset: 2

Views

Author

Emeric Deutsch, Jul 30 2008

Keywords

Comments

Row sums yield A007297.
T(n,1) = A085614(n-1).
Sum_{k=1..n-1} k*T(n,k) = A143020(n).

Examples

			T(3,1)=3 and T(3,2)=1 because in the graphs (AB,BC,CA), (AB,AC), (AB,BC) and (AC,BC) the distances from A to B are 1, 1, 1 and 2, respectively.
Triangle starts:
    1;
    3,   1;
   16,   6,  1;
  105,  41,  9,  1;
  768, 306, 75, 12, 1;
  ...
		

Crossrefs

Programs

  • Maple
    L:=proc(p,q,r) options operator, arrow: sum(binomial(q, i)*binomial(r+p-1-i, r-1), i=0..min(p,q)) end proc: T:=proc(n,k) options operator, arrow: k*L(n-k-1, 3*n-k-4, n-1)/(n-1) end proc: for n from 2 to 10 do seq(T(n,k),k=1..n-1) end do; # yields sequence in triangular form
  • Mathematica
    t[n_, k_] := k*L[n - k - 1, 3*n - k - 4, n-1]/(n-1); L[p_, q_, r_] := Sum[ Binomial[q, i]*Binomial[r + p - 1 - i, r-1], {i, 0, Min[p, q]}]; Flatten[ Table[ t[n, k], {n, 2, 10}, {k, 1, n-1}]] (* Jean-François Alcover, Oct 05 2011, Oct 05 2011, after Maple *)
  • PARI
    T(n,k)=k*sum(i=0, min(n-k-1, 3*n-k-4), binomial(3*n-k-4, i)*binomial(2*n-k-i-3, n-2))/(n-1);
    for(n=2, 10, for(k=1, n-1, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 17 2017

Formula

T(n,k) = k*L(n-k-1, 3n-k-4, n-1)/(n-1) (n >= 2, 1 <= k <= n-1), where L(p,q,r) = [u^p](1+u)^q/(1-u)^r = Sum_{i=0..min(p,q)} binomial(q,i)*binomial(r+p-1-i, r-1).
G.f.: G(t,z) = zg/[g - t*(g - z)], where g=g(z), the g.f. for the number of non-crossing connected graphs on n nodes on a circle, satisfies g^3 + g^2 - 3z*g + 2*z^2 = 0 (A007297).
T(n,k) = k*Sum_{i=0..min(n-k-1, 3*n-k-4)} binomial(3*n-k-4, i)*binomial(2*n-k-i-3, n-2)/(n-1). - Andrew Howroyd, Nov 17 2017