A143037 Triangle read by rows, A000012 * A127773 * A000012. A000012 is an infinite lower triangular matrix with all 1's, A127773 = (1; 0,3; 0,0,6; 0,0,0,10; ...).
1, 3, 4, 6, 9, 10, 10, 16, 19, 20, 15, 25, 31, 34, 35, 21, 36, 46, 52, 55, 56, 28, 49, 64, 74, 80, 83, 84, 36, 64, 85, 100, 110, 116, 119, 120, 45, 81, 109, 130, 145, 155, 161, 164, 165, 55, 100, 136, 164, 185, 200, 210, 216, 219, 220
Offset: 1
Examples
First few rows of the triangle: 1; 3, 4; 6, 9, 10; 10, 16, 19, 20; 15, 25, 31, 34, 35; 21, 36, 46, 52, 55, 56; 28, 49, 64, 74, 80, 83, 84; 36, 64, 85, 100, 110, 116, 119, 120; ...
Crossrefs
Cf. A001296 (row sums).
Programs
-
Maple
A143037 := proc(n,k) k*(k^2-3*k*n-3*k+3*n^2+6*n+2) / 6 ; end proc: seq(seq(A143037(n,k),k=1..n),n=1..12) ; # R. J. Mathar, Aug 31 2022
-
Mathematica
T[n_,k_] = k*(k^2-3*k*n-3*k+3*n^2+6*n+2) / 6;Table[T[n,k],{n,10},{k,n}]//Flatten (* James C. McMahon, Aug 13 2025 *)
Formula
T(n,k) = k*(k^2-3*k*n-3*k+3*n^2+6*n+2) / 6. - R. J. Mathar, Aug 31 2022
Comments