A143068 Expansion of phi(q) / phi(-q^6) in powers of q where phi() is a Ramanujan theta function.
1, 2, 0, 0, 2, 0, 2, 4, 0, 2, 4, 0, 4, 8, 0, 4, 10, 0, 8, 16, 0, 8, 20, 0, 14, 30, 0, 16, 36, 0, 24, 52, 0, 28, 64, 0, 42, 88, 0, 48, 108, 0, 68, 144, 0, 80, 176, 0, 108, 230, 0, 128, 280, 0, 170, 360, 0, 200, 436, 0, 260, 552, 0, 308, 666, 0, 392, 832, 0
Offset: 0
Keywords
Examples
G.f. = 1 + 2*q + 2*q^4 + 2*q^6 + 4*q^7 + 2*q^9 + 4*q^10 + 4*q^12 + 8*q^13 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A143066.
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] / EllipticTheta[ 4, 0, q^6], {q, 0, n}]; (* Michael Somos, Sep 07 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^12 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A))^2, n))};
Formula
Expansion of eta(q^2)^5 * eta(q^12) / (eta(q) * eta(q^4) * eta(q^6))^2 in powers of q.
Euler transform of period 12 sequence [ 2, -3, 2, -1, 2, -1, 2, -1, 2, -3, 2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (96 t)) = (3/2)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A143066.
a(3*n + 2) = 0.
G.f.: ( Sum_{k in Z} x^k^2 ) / ( Sum_{k in Z} (-x^6)^k^2 ).
Comments