cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A143066 Expansion of phi(x^3) / psi(x) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, -1, 1, 0, 1, -2, 1, -1, 2, -3, 2, -1, 4, -5, 3, -3, 6, -8, 5, -4, 9, -12, 8, -7, 14, -18, 13, -10, 20, -26, 18, -16, 29, -37, 27, -23, 41, -52, 38, -34, 58, -72, 54, -47, 79, -98, 74, -67, 109, -133, 103, -92, 146, -178, 138, -127, 196, -237, 187, -170, 260
Offset: 0

Views

Author

Michael Somos, Jul 21 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x + x^2 + x^4 - 2*x^5 + x^6 - x^7 + 2*x^8 - 3*x^9 + 2*x^10 + ...
G.f. = 1/q - q^7 + q^15 + q^31 - 2*q^39 + q^47 - q^55 + 2*q^63 - 3*q^71 + ...
		

References

  • S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 41, 10th equation.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QHypergeometricPFQ[ {x}, {-x^2}, x^2, x], {x, 0, n}]; (* Michael Somos, Sep 07 2015 *)
    a[ n_] := SeriesCoefficient[ 2 x^(1/8) EllipticTheta[ 3, 0, x^3] / EllipticTheta[ 2, 0, x^(1/2)], {x, 0, n}]; (* Michael Somos, Sep 07 2015 *)
    a[ n_] := SeriesCoefficient[ x^(1/8)EllipticTheta[ 2, 0, x^(3/2)]^2 / (EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, 0, x^3]), {x, 0, n}]; (* Michael Somos, Nov 08 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^6 + A)^5 / (eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A))^2, n))};

Formula

Expansion of q^(-1/8) * eta(q) * eta(q^6)^5 / (eta(q^2) * eta(q^3) * eta(q^12))^2 in powers of q.
Euler transform of period 12 sequence [ -1, 1, 1, 1, -1, -2, -1, 1, 1, 1, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (96 t)) = (2/3)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A143068.
G.f.: (1 + 2 * x^3 + 2 * x^12 + 2 * x^27 + ...) / (1 + x + x^3 + x^6 + x^10 + ...). [Ramanujan]
G.f.: 1 - x * (1 - x) / (1 - x^4) + x^4 * (1 - x) * (1 - x^3) / ((1 - x^4) * (1 - x^8)) - x^9 * (1 - x) * (1 - x^3) * (1 - x^5) / ((1 - x^4) * (1 - x^8) * (1 - x^12)) + ... [Ramanujan]
-psi6 +2*psi3 -psi1
Expansion of psi(x^3)^2 / (psi(x) * psi(x^6)) in powers of x where psi() is a Ramanujan theta function. - Michael Somos, Nov 08 2015
a(n) = A262929(4*n). a(3*n) = A262150(n). a(3*n + 1) = - A262152(n). a(3*n + 2) = A262157(n). - Michael Somos, Nov 08 2015

A261877 Expansion of psi(x^4) / phi(-x^3) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 0, 0, 2, 1, 0, 4, 2, 0, 8, 4, 0, 15, 8, 0, 26, 14, 0, 44, 24, 0, 72, 40, 0, 115, 64, 0, 180, 100, 0, 276, 154, 0, 416, 232, 0, 618, 344, 0, 906, 505, 0, 1312, 730, 0, 1880, 1044, 0, 2666, 1480, 0, 3746, 2076, 0, 5220, 2888, 0, 7216, 3988, 0, 9903, 5464, 0
Offset: 0

Views

Author

Michael Somos, Sep 09 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x^3 + x^4 + 4*x^6 + 2*x^7 + 8*x^9 + 4*x^10 + 15*x^12 + ...
G.f. = q + 2*q^7 + q^9 + 4*q^13 + 2*q^15 + 8*q^19 + 4*q^21 + 15*q^25 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 1/2 (x^2)^(-1/4) EllipticTheta[ 2, 0, x^2] / EllipticTheta[ 4, 0, x^3], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A) * eta(x^8 + A)^2 / (eta(x^3 + A)^2 * eta(x^4 + A)), n))};

Formula

Expansion of q^(-1/2) * eta(q^6) * eta(q^8)^2 / (eta(q^3)^2 * eta(q^4)) in powers of q.
Euler transform of period 24 sequence [ 0, 0, 2, 1, 0, 1, 0, -1, 2, 0, 0, 2, 0, 0, 2, -1, 0, 1, 0, 1, 2, 0, 0, 0, ...].
2 * a(n) = A143068(2*n + 1). a(3*n + 2) = 0.
Convolution inverse is A262929. - Michael Somos, Oct 22 2017
Showing 1-2 of 2 results.