A143088 Triangle T(n,m) = (2^(m+1) - 1) * (2^(n-m+1) - 1), read by rows, 0 <= m <= n.
1, 3, 3, 7, 9, 7, 15, 21, 21, 15, 31, 45, 49, 45, 31, 63, 93, 105, 105, 93, 63, 127, 189, 217, 225, 217, 189, 127, 255, 381, 441, 465, 465, 441, 381, 255, 511, 765, 889, 945, 961, 945, 889, 765, 511, 1023, 1533, 1785, 1905, 1953, 1953, 1905, 1785, 1533, 1023, 2047
Offset: 0
Examples
1; 3, 3; 7, 9, 7; 15, 21, 21, 15; 31, 45, 49, 45, 31; 63, 93, 105, 105, 93, 63; 127, 189, 217, 225, 217, 189, 127; 255, 381, 441, 465, 465, 441, 381, 255; 511, 765, 889, 945, 961, 945, 889, 765, 511; 1023, 1533, 1785, 1905, 1953, 1953, 1905, 1785, 1533, 1023; 2047, 3069, 3577, 3825, 3937, 3969, 3937, 3825, 3577, 3069, 2047; ... From _M. F. Hasler_, Sep 12 2024: (Start) Considered as a square array A(m,n), read by antidiagonals, with m, n >= 1, this represents the following matrix A: m \ n: 1 | 2 | 3 | 4 | 5 | ... -----+------+-----+-----+-----+-----+----- 1 | 1 | 3 | 7 | 15 | 31 | ... 2 | 3 | 9 | 21 | 45 | 93 | ... 3 | 7 | 21 | 49 | 105 | 217 | ... 4 | 15 | 45 | 105 | 225 | 465 | ... ... Here each row equals twice the previous row plus the first row, and likewise for columns. See my comment relating this to rank 1 matrices over F_2. (End)
Programs
-
Mathematica
Table[Table[(2^(m + 1) - 1)*(2^(n - m + 1) - 1), {m, 0, n}], {n, 0, 10}]; Flatten[%]
-
PARI
T(n,m) = (2^(m+1) - 1) * (2^(n-m+1) - 1) \\ M. F. Hasler, Sep 12 2024
Formula
T(n,m) = T(n,n-m).
T(n,0) = T(n,n) = 2^(n+1) - 1. - M. F. Hasler, Sep 12 2024
Comments