cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143111 Triangle read by rows, T(n,k) = largest proper divisor of A127093(n,k) where (largest proper divisor)(n) = A032742(n) if n>0 and 0 if n=0.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 0, 2, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 3, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 2, 0, 0, 0, 4, 1, 0, 1, 0, 0, 0, 0, 0, 3, 1, 1, 0, 0, 1, 0, 0, 0, 0, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 0, 3, 0, 0, 0, 0, 0, 6, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 7
Offset: 1

Views

Author

Gary W. Adamson and Mats Granvik, Jul 25 2008

Keywords

Comments

Previous name: A051731 * A032742 * 0^(n-k), 1 <= k <= n.
Row sums = A143112 = sum of (largest proper divisors of the divisors of n) = inverse Mobius transform (A051731) of A032742 (largest proper divisor of n).
The n-th row records the proper divisors of the divisors of n, where the divisors of n comprise triangle A127093 and the largest proper divisors of n = A032742.

Examples

			First few rows of the triangle:
  1;
  1, 1;
  1, 0, 1;
  1, 1, 0, 2;
  1, 0, 0, 0, 1;
  1, 1, 1, 0, 0, 3;
  1, 0, 0, 0, 0, 0, 1;
  1, 1, 0, 2, 0, 0, 0, 4;
  1, 0, 1, 0, 0, 0, 0, 0, 3;
  1, 1, 0, 0, 1, 0, 0, 0, 0, 5;
  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  1, 1, 1, 2, 0, 3, 0, 0, 0, 0, 0, 6;
  ...
Example: The divisors of 12 are shown in row 12 of triangle A127093:
  (1, 2, 3, 4, 0, 6, 0, 0, 0, 0, 0, 12);
and the largest proper divisors of those terms are:
  (1, 1, 1, 2, 0, 3, 0, 0, 0, 0, 0, 6)
where the first 12 terms of A031742 (largest proper divisors of n) are:
  (1, 1, 1, 2, 1, 3, 1, 4, 3, 5, 1, 6).
		

Crossrefs

Programs

  • Mathematica
    Table[If[# > 1, Divisors[#][[-2]], #] &[k*Boole[Divisible[n, k]]], {n, 14}, {k, n}] (* Michael De Vlieger, Dec 19 2022 *)
  • PARI
    t(n,k) = k * 0^(n % k); \\ A127093
    f(n) = if(n<=1, n, n/factor(n)[1, 1]); \\ A032742
    T(n,k) = f(t(n,k));
    row(n) = vector(n, k, T(n,k)); \\ Michel Marcus, Dec 19 2022
    
  • PARI
    T1(n,k) = 0^(n % k); \\ A051731
    a2(n) = if(n==1, 1, n/factor(n)[1, 1]); \\ A032742
    tabl(nn) = my(m1 = matrix(nn,nn,n,k,T1(n,k)), v2 = vector(nn,n,a2(n))); m1*matdiagonal(v2); \\ Michel Marcus, Dec 19 2022

Formula

Triangle read by rows, T(n,k) = A051731 * A032742 * 0^(n-k), 1 <= k <= n.

Extensions

Typo in data corrected and new name from existing formula by Michel Marcus, Dec 19 2022