A143136
E.g.f. satisfies: A(x) = x + sinh( A(x) )^2.
Original entry on oeis.org
1, 2, 12, 128, 1920, 36992, 870912, 24232448, 777999360, 28309164032, 1151292628992, 51750540443648, 2547747292446720, 136336755956252672, 7879446478581399552, 489119124160488931328, 32456290094449950720000
Offset: 1
A(x) = x + 2*x^2/2! + 12*x^3/3! + 128*x^4/4! + 1920*x^5/5! + ...
sinh(A(x)) = G(x) is the e.g.f. of A143137:
G(x) = x + 2*x^2/2! + 13*x^3/3! + 140*x^4/4! + 2101*x^5/5! + ...
Related expansions:
A(x) = x + sinh(x)^2 + d/dx sinh(x)^4/2! + d^2/dx^2 sinh(x)^6/3! + d^3/dx^3 sinh(x)^8/4! + ...
log(A(x)/x) = sinh(x)^2/x + d/dx (sinh(x)^4/x)/2! + d^2/dx^2 (sinh(x)^6/x)/3! + d^3/dx^3 (sinh(x)^8/x)/4! +...
-
Rest[CoefficientList[InverseSeries[Series[x - Sinh[x]^2,{x,0,20}],x],x] * Range[0,20]!] (* Vaclav Kotesovec, Jan 08 2014 *)
-
{a(n)=n!*polcoeff(serreverse(x-sinh(x+x*O(x^n))^2),n)}
-
{a(n)=local(A=x);for(i=0,n,A=x + sinh(A)^2);n!*polcoeff(A,n)}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, sinh(x+x*O(x^n))^(2*m)/m!)); n!*polcoeff(A, n)}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, sinh(x+x*O(x^n))^(2*m)/x/m!)+x*O(x^n))); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
A143135
E.g.f. satisfies: A(x) = sin(x + A(x)^2) with A(0)=0.
Original entry on oeis.org
1, 2, 11, 100, 1261, 20342, 399671, 9256840, 246907321, 7452534122, 251099460611, 9341422237420, 380293239870181, 16815919738248542, 802553031266952431, 41117164304824602640, 2250747364089063475441
Offset: 1
A(x) = x + 2*x^2/2! + 11*x^3/3! + 100*x^4/4! + 1261*x^5/5! +...
A(x) = sin(G(x)) where G(x) = x + A(x)^2 is the e.g.f. of A143134:
G(x) = x + 2*x^2/2! + 12*x^3/3! + 112*x^4/4! + 1440*x^5/5! +...
-
Rest[CoefficientList[InverseSeries[Series[-x^2 + ArcSin[x], {x, 0, 20}], x],x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 19 2014 *)
-
{a(n)=local(A=x);for(i=0,n,A=x + sin(A)^2);n!*polcoeff(sin(A),n)}
-
{a(n)=n!*polcoeff(sin(serreverse(x-sin(x+x*O(x^n))^2)),n)}
A214431
E.g.f. satisfies: A(x) = x + arcsin( A(x) )^2.
Original entry on oeis.org
1, 2, 12, 128, 1920, 37088, 876288, 24478848, 789208320, 28841682432, 1178155579392, 53196745543680, 2630883967315968, 141432764970270720, 8211780541909352448, 512119065654535618560, 34141138126195739394048, 2422954554718763388764160, 182378340941780059828518912
Offset: 1
E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 128*x^4/4! + 1920*x^5/5! + ...
where
arcsin(A(x)) = x + 2*x^2/2! + 13*x^3/3! + 140*x^4/4! + 2109*x^5/5! + 40838*x^6/6! + 966393*x^7/7! + ...
arcsin(A(x))^2 = 2*x^2/2! + 12*x^3/3! + 128*x^4/4! + 1920*x^5/5! + 37088*x^6/6! + 876288*x^7/7! + ...
Related expansions:
A(x) = x + arcsin(x)^2 + d/dx arcsin(x)^4/2! + d^2/dx^2 arcsin(x)^6/3! + d^3/dx^3 arcsin(x)^8/4! + ...
log(A(x)/x) = arcsin(x)^2/x + d/dx (arcsin(x)^4/x)/2! + d^2/dx^2 (arcsin(x)^6/x)/3! + d^3/dx^3 (arcsin(x)^8/x)/4! + ...
-
Rest[CoefficientList[InverseSeries[Series[x - ArcSin[x]^2, {x, 0, 20}], x],x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 12 2014 *)
-
{a(n)=n!*polcoeff(serreverse(x-asin(x+x*O(x^n))^2), n)}
-
{a(n)=local(A=x); for(i=0, n, A=x + asin(A+x*O(x^n))^2); n!*polcoeff(A, n)}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, asin(x+x*O(x^n))^(2*m)/m!)); n!*polcoeff(A, n)}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, asin(x+x*O(x^n))^(2*m)/x/m!)+x*O(x^n))); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
A214770
E.g.f. satisfies: A(x) = x + sin(A(x))*sinh(A(x)).
Original entry on oeis.org
1, 2, 12, 120, 1680, 30232, 664832, 17277120, 518031360, 17602865312, 668505311232, 28059791760000, 1289932186583040, 64455076284318592, 3478305412257677312, 201608948937441269760, 12491465252403224248320, 823886511479340063068672, 57633367371058675735068672
Offset: 1
E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 120*x^4/4! + 1680*x^5/5! + 30232*x^6/6! +...
where A(x - sin(x)*sinh(x)) = x and A(x) = x + sin(A(x))*sinh(A(x)).
Related expansions:
sin(x)*sinh(x) = 2*x^2/2! - 8*x^6/6! + 32*x^10/10! - 128*x^14/14! + 512*x^18/18! -+...+ (-1)^(n-1)*2^(2*n-1)*x^(4*n-2)/(4*n-2)! +-...
sin(A(x)) = x + 2*x^2/2! + 11*x^3/3! + 108*x^4/4! + 1501*x^5/5! + 26902*x^6/6! +...
sinh(A(x)) = x + 2*x^2/2! + 13*x^3/3! + 132*x^4/4! + 1861*x^5/5! + 33622*x^6/6! +...
Other series:
A(x) = x + sin(x)*sinh(x) + d/dx sin(x)^2*sinh(x)^2/2! + d^2/dx^2 sin(x)^3*sinh(x)^3/3! + d^3/dx^3 sin(x)^4*sinh(x)^4/4! +...
log(A(x)/x) = sin(x)*sinh(x)/x + d/dx sin(x)^2*sinh(x)^2/x/2! + d^2/dx^2 sin(x)^3*sinh(x)^3/x/3! + d^3/dx^3 sin(x)^4*sinh(x)^4/x/4! +...
-
Rest[CoefficientList[InverseSeries[Series[x - Sin[x]*Sinh[x], {x, 0, 20}], x],x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 13 2014 *)
-
{a(n)=n!*polcoeff(serreverse(x-sin(x+x*O(x^n))*sinh(x+x*O(x^n))), n)}
for(n=1, 25, print1(a(n), ", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, sin(x+x*O(x^n))^m*sinh(x+x*O(x^n))^m/m!)); n!*polcoeff(A, n)}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, sin(x+x*O(x^n))^m*sinh(x+x*O(x^n))^m/x/m!))); n!*polcoeff(A, n)}
A277612
E.g.f. satisfies: A(x - sin(x)^2) = x + sin(x)^2.
Original entry on oeis.org
1, 4, 24, 224, 2880, 47104, 935424, 21853184, 587089920, 17829167104, 603915485184, 22571950997504, 922735222456320, 40954197741666304, 1961183862263906304, 100787274348058640384, 5532701353887903252480, 323102311113161602760704, 20000832981651983154806784, 1308180577070098190616756224, 90146906116103034082689024000, 6527896185206802934447948693504
Offset: 1
E.g.f.: A(x) = x + 4*x^2/2! + 24*x^3/3! + 224*x^4/4! + 2880*x^5/5! + 47104*x^6/6! + 935424*x^7/7! + 21853184*x^8/8! + 587089920*x^9/9! + 17829167104*x^10/10! +...
such that A(x - sin(x)^2) = x + sin(x)^2.
RELATED SERIES.
A(x - sin(x)^2) = x + 2*x^2/2! - 8*x^4/4! + 32*x^6/6! - 128*x^8/8! + 512*x^10/10! - 2048*x^12/12! +...
which equals x + sin(x)^2.
cos(A(x) + x) = 1 - 4*x^2/2! - 24*x^3/3! - 224*x^4/4! - 2880*x^5/5! - 47104*x^6/6! +...
which equals 1+x - A(x).
-
{a(n) = my(A=x); for(i=1,21,A = subst(x + sin(x +x*O(x^n) )^2,x, serreverse(x - sin(x +x*O(x^n) )^2))); n!*polcoeff(A,n)}
for(n=1,25,print1(a(n),", "))
-
{a(n) = my(A=x); for(i=0,n, A = 1+x - cos(A + x +x*O(x^n))); n!*polcoeff(A,n)}
for(n=1,25,print1(a(n),", "))
Showing 1-5 of 5 results.
Comments