A143134
E.g.f. satisfies: A(x) = x + sin( A(x) )^2 with A(0)=0.
Original entry on oeis.org
1, 2, 12, 112, 1440, 23552, 467712, 10926592, 293544960, 8914583552, 301957742592, 11285975498752, 461367611228160, 20477098870833152, 980591931131953152, 50393637174029320192, 2766350676943951626240
Offset: 1
A(x) = x + 2*x^2/2! + 12*x^3/3! + 112*x^4/4! + 1440*x^5/5! +...
sin(A(x)) = G(x) is the e.g.f. of A143135:
G(x) = x + 2*x^2/2! + 11*x^3/3! + 100*x^4/4! + 1261*x^5/5! +...
G(x)^2 = 2*x^2/2! + 12*x^3/3! + 112*x^4/4! + 1440*x^5/5! +...
Related expansions:
A(x) = x + sin(x)^2 + d/dx sin(x)^4/2! + d^2/dx^2 sin(x)^6/3! + d^3/dx^3 sin(x)^8/4! +...
log(A(x)/x) = sin(x)^2/x + d/dx (sin(x)^4/x)/2! + d^2/dx^2 (sin(x)^6/x)/3! + d^3/dx^3 (sin(x)^8/x)/4! +...
-
Rest[CoefficientList[InverseSeries[Series[x - Sin[x]^2,{x,0,20}],x],x] * Range[0,20]!] (* Vaclav Kotesovec, Jan 18 2014 *)
-
{a(n)=local(A=x);for(i=0,n,A=x + sin(A)^2);n!*polcoeff(A,n)}
-
{a(n)=n!*polcoeff(serreverse(x-sin(x+x*O(x^n))^2),n)}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, sin(x+x*O(x^n))^(2*m)/m!)); n!*polcoeff(A, n)}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, sin(x+x*O(x^n))^(2*m)/x/m!)+x*O(x^n))); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
A143137
E.g.f. satisfies A(x) = sinh(x + A(x)^2).
Original entry on oeis.org
1, 2, 13, 140, 2101, 40502, 954073, 26557400, 852911401, 31042592042, 1262704455013, 56767589130980, 2795116027239901, 149590982933830622, 8646295934108179633, 536766403519254357680, 35620604244949591333201
Offset: 1
A(x) = x + 2*x^2/2! + 13*x^3/3! + 140*x^4/4! + 2101*x^5/5! +...
A(x) = sinh(G(x)) where G(x) is the e.g.f. of A143136:
G(x) = x + 2*x^2/2! + 12*x^3/3! + 128*x^4/4! + 1920*x^5/5! +...
-
Rest[CoefficientList[InverseSeries[Series[-x^2 + ArcSinh[x],{x,0,20}],x],x] * Range[0,20]!] (* Vaclav Kotesovec, Jan 08 2014 *)
-
{a(n)=n!*polcoeff(sinh(serreverse(x-sinh(x+x*O(x^n))^2)),n)}
-
{a(n)=local(A=x);for(i=0,n,A=x + sinh(A)^2);n!*polcoeff(sinh(A),n)}
A185190
E.g.f. satisfies: A(x) = x + arcsinh(A(x))^2.
Original entry on oeis.org
1, 2, 12, 112, 1440, 23648, 473088, 11164032, 303624960, 9351301632, 321717276672, 12228424826880, 508916576243712, 23016333612318720, 1124014843389984768, 58949533609403842560, 3304473379374295744512, 197167421810210663301120, 12476358616574849161101312
Offset: 1
E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 112*x^4/4! + 1440*x^5/5! + ...
Related expansions:
arcsinh(A(x)) = x + 2*x^2/2! + 11*x^3/3! + 100*x^4/4! + 1269*x^5/5! + ...
arcsinh(A(x))^2 = 2*x^2/2! + 12*x^3/3! + 112*x^4/4! + 1440*x^5/5! + ...
Series expressions:
A(x) = x + arcsinh(x)^2 + d/dx arcsinh(x)^4/2! + d^2/dx^2 arcsinh(x)^6/3! + d^3/dx^3 arcsinh(x)^8/4! + ...
log(A(x)/x) = arcsinh(x)^2/x + d/dx (arcsinh(x)^4/x)/2! + d^2/dx^2 (arcsinh(x)^6/x)/3! + d^3/dx^3 (arcsinh(x)^8/x)/4! + ...
-
Rest[CoefficientList[InverseSeries[Series[x - ArcSinh[x]^2, {x, 0, 20}], x],x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 11 2014 *)
nmax = 20; A[] = 0; Do[A[x] = x + ArcSinh[A[x]]^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; Rest[CoefficientList[A[x], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Aug 10 2025 *)
-
{a(n)=local(A=x+O(x^n)); for(i=0, n, A=x + asinh(A)^2); n!*polcoeff(A, n)}
-
{a(n)=n!*polcoeff(serreverse(x-asinh(x+x*O(x^n))^2), n)}
for(n=1,26,print1(a(n),","))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, asinh(x+x*O(x^n))^(2*m)/m!)); n!*polcoeff(A, n)}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, asinh(x+x*O(x^n))^(2*m)/x/m!)+x*O(x^n))); n!*polcoeff(A, n)}
A215093
E.g.f. satisfies: A(x) = x + sinh( A(x) )^2 / 2.
Original entry on oeis.org
1, 1, 3, 19, 165, 1801, 24003, 378379, 6880485, 141757201, 3263757123, 83046239299, 2314209491685, 70093262093401, 2292753819807363, 80548997707137979, 3024937662747436965, 120925183043471954401, 5127013172890341294723, 229794790034059392232819
Offset: 1
A(x) = x + x^2/2! + 3*x^3/3! + 19*x^4/4! + 165*x^5/5! + ...
sinh(A(x)) = G(x) is the e.g.f. of A215094:
G(x) = x + x^2/2! + 4*x^3/3! + 25*x^4/4! + 211*x^5/5! + 2296*x^6/6! + ...
where
G(x)^2/2 = x^2/2! + 3*x^3/3! + 19*x^4/4! + 165*x^5/5! + ...
Related expansions:
A(x) = x + sinh(x)^2/2 + d/dx sinh(x)^4/(2!*2^2) + d^2/dx^2 sinh(x)^6/(3!*2^3) + d^3/dx^3 sinh(x)^8/(4!*2^4) + ...
log(A(x)/x) = sinh(x)^2/(2*x) + d/dx sinh(x)^4/(2!*2^2*x) + d^2/dx^2 sinh(x)^6/(3!*2^3*x) + d^3/dx^3 sinh(x)^8/(4!*2^4*x) + ...
-
max = 20; Rest[ CoefficientList[ InverseSeries[ Series[x - Sinh[x]^2/2, {x, 0, max}], x], x]]*Range[max]! (* Jean-François Alcover, Aug 06 2012, from 1st formula *)
-
{a(n)=n!*polcoeff(serreverse(x-sinh(x+x*O(x^n))^2/2), n)}
-
{a(n)=local(A=x); for(i=0, n, A=x + sinh(A)^2/2); n!*polcoeff(A, n)}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, sinh(x+x*O(x^n))^(2*m)/(m!*2^m))); n!*polcoeff(A, n)}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, sinh(x+x*O(x^n))^(2*m)/(m!*2^m*x))+x*O(x^n))); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
Showing 1-4 of 4 results.
Comments