A143139
E.g.f.: A(x) = exp(x + A(x)^2) - 1.
Original entry on oeis.org
1, 3, 25, 351, 6901, 174483, 5392465, 196967991, 8301682141, 396555037803, 21171512707225, 1249311005445231, 80742309245690821, 5672134436846492163, 430345858647623635105, 35069095795843414698471, 3054896437732455928549741, 283283784773408059496473563
Offset: 1
A(x) = x + 3*x^2/2! + 25*x^3/3! + 351*x^4/4! + 6901*x^5/5! + ...
where A(log(1+x) - x^2) = x.
Log(1 + A(x)) = x + A(x)^2 = G(x) = g.f. of A143138:
G(x) = x + 2*x^2/2! + 18*x^3/3! + 254*x^4/4! + 5010*x^5/5! + ...
A(x)^2 = 2*x^2/2! + 18*x^3/3! + 254*x^4/4! + 5010*x^5/5! + ...
-
Rest[CoefficientList[InverseSeries[Series[Log[1+x]-x^2, {x, 0, 20}], x],x] * Range[0, 20]!] (* Vaclav Kotesovec, Dec 28 2013 *)
-
a(n):=sum((n+k-1)!*sum((-1)^(j)/(k-j)!*sum(((-1)^l*stirling1(n-2*l+j-1,j-l))/(l!*(n-2*l+j-1)!),l,0,min(j,(n+j-1)/2)),j,0,k),k,0,n-1); /* Vladimir Kruchinin, Feb 17 2012 */
-
{a(n)=local(A=x+O(x^n));for(i=0,n,A=exp(x+A^2)-1);n!*polcoeff(A,n)}
-
{a(n)=n!*polcoeff(exp(serreverse(x-(exp(x+x*O(x^n))-1)^2))-1,n)}
A143154
E.g.f.: A(x) = x + log(1 - A(x))^2.
Original entry on oeis.org
1, 2, 18, 262, 5320, 138728, 4419156, 166319424, 7221397848, 355312006392, 19537581248592, 1187337791554176, 79025863405440432, 5716937001401316000, 446654003380859659488, 37480492611898380241248
Offset: 1
A(x) = x + 2*x^2/2! + 18*x^3/3! + 262*x^4/4! + 5320*x^5/5! + ...
-log(1 - A(x)) = G(x) = the g.f. of A143155:
G(x) = x + 3*x^2/2! + 26*x^3/3! + 376*x^4/4! + 7614*x^5/5! + ...
G(x)^2 = 2*x^2/2! + 18*x^3/3! + 262*x^4/4! + 5320*x^5/5! + ...
Related expansions:
A(x) = x + log(1-x)^2 + d/dx log(1-x)^4/2! + d^2/dx^2 log(1-x)^6/3! + d^3/dx^3 log(1-x)^8/4! + ...
log(A(x)/x) = log(1-x)^2/x + d/dx (log(1-x)^4/x)/2! + d^2/dx^2 (log(1-x)^6/x)/3! + d^3/dx^3 (log(1-x)^8/x)/4! + ...
-
Rest[CoefficientList[InverseSeries[Series[x-Log[1-x]^2,{x,0,20}],x],x] * Range[0,20]!] (* Vaclav Kotesovec, Jan 24 2014 *)
-
a(n):=((n-1)!*sum(binomial(n+k-1,n-1)*sum((-1)^(n+j-1)*binomial(k,j)*sum((binomial(j,l)*(2*(j-l))!*stirling1(n-l+j-1,2*(j-l)))/(n-l+j-1)!,l,0,j),j,0,k),k,0,n-1)); /* Vladimir Kruchinin, Feb 07 2012 */
-
{a(n)=local(A=x+O(x^n));for(i=0,n,A=x + log(1-A)^2);n!*polcoeff(A,n)}
-
{a(n)=n!*polcoeff(serreverse(x-log(1-x+x*O(x^n))^2),n)}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, log(1-x+x*O(x^n))^(2*m)/m!)); n!*polcoeff(A, n)}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, log(1-x+x*O(x^n))^(2*m)/x/m!)+x*O(x^n))); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
A277404
E.g.f. A(x) satisfies: A( x - (exp(x) - 1)^2 ) = x + (exp(x) - 1)^2.
Original entry on oeis.org
1, 4, 36, 508, 10020, 253804, 7853076, 287078908, 12106864260, 578586544204, 30901130685876, 1823983173981148, 117911755067635620, 8284976875099852204, 628692318063511556436, 51240154266491883376828, 4464155216699369664399300, 414013560595951627772296204, 40722939746084736801890208756
Offset: 1
E.g.f.: A(x) = x + 4*x^2/2! + 36*x^3/3! + 508*x^4/4! + 10020*x^5/5! + 253804*x^6/6! + 7853076*x^7/7! + 287078908*x^8/8! + 12106864260*x^9/9! + 578586544204*x^10/10! +...
such that A( x - (exp(x) - 1)^2 ) = x + (exp(x) - 1)^2.
-
{a(n) = n!*polcoeff( -x + 2*serreverse( x - (exp(x +x*O(x^n)) - 1)^2 ), n)}
for(n=1,30,print1(a(n),", "))
Showing 1-3 of 3 results.
Comments