cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143150 A triangle sequence based on the Folium of Descartes: x^3 + y^3 - 3*a*x*y.

Original entry on oeis.org

-1, 3, 4, 19, 17, 27, 53, 48, 55, 80, 111, 103, 107, 129, 175, 199, 188, 189, 208, 251, 324, 323, 309, 307, 323, 363, 433, 539, 489, 472, 467, 480, 517, 584, 687, 832, 703, 683, 675, 685, 719, 783, 883, 1025, 1215, 971, 948, 937, 944, 975, 1036, 1133, 1272, 1459, 1700
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 17 2008

Keywords

Comments

Row sums are {-1, 7, 63, 236, 625, 1359, 2597, 4528, 7371, 11375, ...}.

Examples

			Triangle begins as:
   -1;
    3,   4;
   19,  17,  27;
   53,  48,  55,  80;
  111, 103, 107, 129, 175;
  199, 188, 189, 208, 251, 324;
  323, 309, 307, 323, 363, 433, 539;
  ...
		

References

  • Samuel M. Shelby, ed., "CRC Standard Mathematical Tables and Formulae", 12th Edition, Curves and Surfaces (page 421).

Programs

  • GAP
    Flat(List([1..10], n-> List([1..n], k-> n^3 -3*n*k +k^3 ))); # G. C. Greubel, Apr 03 2019
  • Magma
    [[n^3 -3*n*k +k^3: k in [1..n]]: n in [1..10]]; // G. C. Greubel, Apr 03 2019
    
  • Mathematica
    Table[n^3 +m^3 -3*n*m, {n,1,10}, {m,1,n}]//Flatten (* modified by G. C. Greubel, Apr 03 2019 *)
  • PARI
    {T(n,k) = n^3 -3*n*k +k^3};
    for(n=1,10, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Apr 03 2019
    
  • Sage
    [[n^3 -3*n*k +n^3 for k in (1..n)] for n in (1..10)] # G. C. Greubel, Apr 03 2019
    

Formula

T(n,m) = n^3 + m^3 - 3*n*m.
row sums: Sum_{m=1..n} T(n,m) = n^2*(5*n^2 - 4*n - 5)/4. - R. J. Mathar, Oct 24 2008