cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143186 A triangle sequence of holes in a triangle sequence numbering of n^3+m^3 (A003325) by comparing the n level to the 2*n level.

Original entry on oeis.org

28, 35, 65, 72, 91, 126, 126, 133, 152, 189, 217, 224, 243, 250, 217, 224, 243, 280, 341, 344, 351, 370, 407, 432, 468, 513, 344, 351, 370, 407, 468, 513, 520, 539, 559, 576, 637, 686, 728, 730, 737, 756, 793, 513, 520, 539, 576, 637, 728, 730, 737, 756, 793
Offset: 1

Views

Author

Roger L. Bagula, Oct 17 2008

Keywords

Comments

Row sums are:
{0, 63, 354, 1534, 4190, 9714, 21632, 40635, 72215, 123741}.
The estimate of coverage is:
Table[N[Length[c[[n]]]/Length[a[2*n]]], {n, 1, 10}]
{0., 0.2, 0.190476, 0.222222, 0.218182, 0.220779, 0.230769, 0.231343, 0.230769, 0.235577};
that is only 25% aren't in the a(n) compared to a(2*n).

Examples

			{28, 35},
{65, 72, 91, 126},
{126, 133, 152, 189, 217, 224, 243, 250},
{217, 224, 243, 280, 341, 344, 351, 370, 407, 432, 468, 513},
{344, 351, 370, 407, 468, 513, 520, 539, 559, 576, 637, 686, 728, 730, 737, 756, 793},
{513, 520, 539, 576, 637, 728, 730, 737, 756, 793, 854, 855, 945, 1001, 1008, 1024, 1027, 1064, 1072, 1125, 1216, 1241, 1332, 1339},
{730, 737, 756, 793, 854, 945, 1001, 1008, 1027, 1064, 1072, 1125, 1216, 1241, 1332, 1339, 1343, 1358, 1395, 1456, 1458, 1512, 1547, 1674, 1729, 1736, 1755, 1792, 1843, 1853, 1944},
{1001, 1008, 1027, 1064, 1125, 1216, 1332, 1339, 1343, 1358, 1395, 1456, 1512, 1547, 1674, 1729, 1736, 1755, 1792, 1843, 1853, 1944, 2000, 2060, 2071, 2198, 2205, 2224, 2240, 2261, 2322, 2331, 2413, 2457, 2540, 2662, 2709, 2728, 2745}, {1332, 1339, 1358, 1395, 1456, 1547, 1674, 1736, 1755, 1792, 1843, 1853, 1944, 2060, 2071, 2198, 2205, 2224, 2240, 2261, 2322, 2331, 2413, 2457, 2540, 2662, 2709, 2728, 2745, 2752, 2771, 2808, 2869, 2926, 2960, 3059, 3087, 3197, 3256, 3376, 3383, 3402, 3439, 3456, 3473, 3500, 3528, 3591, 3718}
		

Crossrefs

Cf. A003325.

Programs

  • Mathematica
    Clear[a, b, c, n, m, k]; t[n_, m_] = n^3 + m^3; a[k_] := Union[Flatten[Table[Table[t[n, m], {m, 1, n}], {n, 1, k}]]]; b[n_] := Table[a[2*n][[k]], {k, 1, Floor[Length[a[2*n]]/2]}]; c = Table[Complement[b[n], a[n]], {n, 1, 10}]; Flatten[c]

Formula

a(n) =triangle_sequenceto_level(n); b(n)=lower_half_of_a(2*n); c(n)=elements in b(n) but not in a(n).