cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143202 Numbers having exactly two distinct prime factors p, q with q = p+2.

Original entry on oeis.org

15, 35, 45, 75, 135, 143, 175, 225, 245, 323, 375, 405, 675, 875, 899, 1125, 1215, 1225, 1573, 1715, 1763, 1859, 1875, 2025, 3375, 3599, 3645, 4375, 5183, 5491, 5625, 6075, 6125, 6137, 8575, 9375, 10125, 10403, 10935, 11663, 12005, 16875, 17303, 18225
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 12 2008

Keywords

Comments

Subsequence of A007774.
A037074 is a subsequence.

Examples

			a(1) = 15 = 3 * 5 = A001359(1) * A006512(1).
a(2) = 35 = 5 * 7 = A001359(2) * A006512(2).
a(3) = 45 = 3^2 * 5 = A001359(1)^2 * A006512(1).
a(4) = 75 = 3 * 5^2 = A001359(1) * A006512(1)^2.
a(5) = 135 = 3^3 * 5 = A001359(1)^3 * A006512(1).
a(6) = 143 = 11 * 13 = A001359(3) * A006512(3).
a(7) = 175 = 5^2 * 7 = A001359(2)^2 * A006512(2).
a(8) = 225 = 3^2 * 5^2 = A001359(1)^2 * A006512(1)^2.
a(9) = 245 = 5 * 7^2 = A001359(2) * A006512(2)^2.
a(10) = 323 = 17 * 19 = A001359(4) * A006512(4).
a(11) = 375 = 3 * 5^3 = A001359(1) * A006512(1)^3.
a(12) = 405 = 3^4 * 5 = A001359(1)^4 * A006512(1).
		

Crossrefs

Programs

  • Haskell
    a143202 n = a143202_list !! (n-1)
    a143202_list = filter (\x -> a006530 x - a020639 x == 2) [1,3..]
    -- Reinhard Zumkeller, Sep 13 2011
  • Mathematica
    tdpfQ[n_]:=Module[{fi=FactorInteger[n][[;;,1]]},Length[fi]==2&&fi[[2]]-fi[[1]]==2]; Select[Range[20000],tdpfQ] (* Harvey P. Dale, Mar 04 2023 *)

Formula

A143201(a(n)) = 3.
A020639(a(n)) in A001359 and A006530(a(n)) in A006512.
A001221(a(n)) = 2.
Sum_{n>=1} 1/a(n) = Sum_{n>=1} 1/(A001359(n)^2-1) = 0.1812568234997... . - Amiram Eldar, Oct 26 2024