cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143213 Triangle T(n,m) read by rows: Gray code of A060187(n, k) (decimal representation), 1 <= k <= n, n >= 1.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 28, 28, 1, 1, 106, 149, 106, 1, 1, 155, 987, 987, 155, 1, 1, 955, 440, 514, 440, 955, 1, 1, 194, 137, 974, 974, 137, 194, 1, 1, 340, 754, 60, 293, 60, 754, 340, 1, 1, 181, 238, 166, 377, 377, 166, 238, 181, 1, 1, 977, 283, 540, 411, 142, 411, 540, 283, 977, 1
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 20 2008

Keywords

Examples

			Triangle begins as:
  1;
  1,   1;
  1,   5,   1;
  1,  28,  28,   1;
  1, 106, 149, 106,   1;
  1, 155, 987, 987, 155,   1;
  1, 955, 440, 514, 440, 955,   1;
  1, 194, 137, 974, 974, 137, 194,   1;
  1, 340, 754,  60, 293,  60, 754, 340,   1;
  1, 181, 238, 166, 377, 377, 166, 238, 181,   1;
  1, 977, 283, 540, 411, 142, 411, 540, 283, 977,  1;
		

Crossrefs

Programs

  • Mathematica
    GrayCode[n_, k_]:= FromDigits[BitXor@@@Partition[Prepend[IntegerDigits[n,2,k], 0], 2, 1], 2];
    A060187[n_, k_]:= Sum[(-1)^(k-j)*Binomial[n,k-j]*(2*j-1)^(n-1), {j,k}];
    A143213[n_, k_]:= GrayCode[A060187[n, k], 10];
    Table[A143213[n,k], {n,12}, {k,n}]//Flatten

Formula

T(n, n-k) = T(n, k). - G. C. Greubel, Aug 08 2024

Extensions

Edited by G. C. Greubel, Aug 27 2024