cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143219 Triangle read by rows, A127648 * A000012 * A127773, 1 <= k <= n.

Original entry on oeis.org

1, 2, 6, 3, 9, 18, 4, 12, 24, 40, 5, 15, 30, 50, 75, 6, 18, 36, 60, 90, 126, 7, 21, 42, 70, 105, 147, 196, 8, 24, 48, 80, 120, 168, 224, 288, 9, 27, 54, 90, 135, 189, 252, 324, 405, 10, 30, 60, 100, 150, 210, 280, 360, 450, 550
Offset: 1

Views

Author

Gary W. Adamson, Jul 30 2008

Keywords

Examples

			First few rows of the triangle =
  1;
  2,  6;
  3,  9, 18;
  4, 12, 24, 40;
  5, 15, 30, 50,  75;
  6, 18, 36, 60,  90, 126;
  7, 21, 42, 70, 105, 147, 196;
  ...
		

Crossrefs

Cf. A002024, A002411 (right border), A002414, A002417 (row sums), A011379.

Programs

  • Magma
    [n*Binomial(k+1, 2): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 12 2022
    
  • Mathematica
    Table[n*Binomial[k+1, 2], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Jul 12 2022 *)
  • SageMath
    flatten([[n*binomial(k+1, 2) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Jul 12 2022

Formula

Triangle read by rows, A127648 * A000012 * A127773, 1 <= k <= n.
Sum_{k=1..n} T(n, k) = A002417(n).
T(n, n) = A002411(n).
From G. C. Greubel, Jul 12 2022: (Start)
T(n, k) = A002024(n,k) * A127773(n,k).
T(n, k) = n * binomial(k+1, 2).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = (1/4)*(4*n - 3*floor((n+1)/2) + 3)*binomial(2 + floor((n+1)/2), 3).
T(2*n-1, n) = A002414(n), n >= 1.
T(2*n-2, n-1) = A011379(n-1), n >= 2. (End)