A143224 Numbers n such that (number of primes between n^2 and (n+1)^2) = (number of primes between n and 2n).
0, 9, 36, 37, 46, 49, 85, 102, 107, 118, 122, 127, 129, 140, 157, 184, 194, 216, 228, 360, 365, 377, 378, 406, 416, 487, 511, 571, 609, 614, 672, 733, 767, 806, 813, 863, 869, 916, 923, 950, 978, 988, 1249, 1279, 1280, 1385, 1427, 1437, 1483, 1539, 1551, 1690
Offset: 1
Keywords
Examples
There is the same number of primes (namely 3) between 9^2 and 10^2 as between 9 and 2*9, so 9 is a term.
References
- M. Aigner and C. M. Ziegler, Proofs from The Book, Chapter 2, Springer, NY, 2001.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 5th ed., Oxford Univ. Press, 1989, p. 19.
- S. Ramanujan, Collected Papers of Srinivasa Ramanujan (G. H. Hardy, S. Aiyar, P. Venkatesvara and B. M. Wilson, eds.), Amer. Math. Soc., Providence, 2000, pp. 208-209. [Jonathan Sondow, Aug 03 2008]
Links
- T. D. Noe, Table of n, a(n) for n=1..97 (no other n < 10^6)
- T. Hashimoto, On a certain relation between Legendre's conjecture and Bertrand's postulate, arXiv:0807.3690 [math.GM], 2008.
- M. Hassani, Counting primes in the interval (n^2,(n+1)^2), arXiv:math/0607096 [math.NT], 2006.
- J. Pintz, Landau's problems on primes
- S. Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc., 11 (1919), 181-182.
- J. Sondow, Ramanujan Prime in MathWorld.
- J. Sondow and E. W. Weisstein, Bertrand's Postulate in MathWorld.
- Eric Weisstein's World of Mathematics, Legendre's Conjecture.
Crossrefs
Programs
-
Maple
with(numtheory): A143224:=n->`if`(pi((n+1)^2)-pi(n^2) = pi(2*n)-pi(n), n, NULL): seq(A143224(n), n=0..2000); # Wesley Ivan Hurt, Jul 25 2017
-
Mathematica
L={}; Do[If[PrimePi[(n+1)^2]-PrimePi[n^2] == PrimePi[2n]-PrimePi[n], L=Append[L,n]], {n,0,2000}]; L (* Second program *) With[{nn = 2000}, {0}~Join~Position[#, {0}][[All, 1]] &@ Map[Differences, Transpose@ {Differences@ Array[PrimePi[#^2] &, nn], Array[PrimePi[2 #] - PrimePi[#] &, nn - 1]}]] (* Michael De Vlieger, Jul 25 2017 *)
-
PARI
is(n) = primepi((n+1)^2)-primepi(n^2)==primepi(2*n)-primepi(n) \\ Felix Fröhlich, Jul 25 2017
Formula
A143223(a(n)) = 0.
Comments