cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143224 Numbers n such that (number of primes between n^2 and (n+1)^2) = (number of primes between n and 2n).

Original entry on oeis.org

0, 9, 36, 37, 46, 49, 85, 102, 107, 118, 122, 127, 129, 140, 157, 184, 194, 216, 228, 360, 365, 377, 378, 406, 416, 487, 511, 571, 609, 614, 672, 733, 767, 806, 813, 863, 869, 916, 923, 950, 978, 988, 1249, 1279, 1280, 1385, 1427, 1437, 1483, 1539, 1551, 1690
Offset: 1

Views

Author

Jonathan Sondow, Jul 31 2008

Keywords

Comments

The sequence gives the positions of zeros in A143223. The number of primes in question is A143225(n).
Legendre's conjecture (still open) says there is always a prime between n^2 and (n+1)^2. Bertrand's postulate (actually a theorem due to Chebyshev) says there is always a prime between n and 2n.

Examples

			There is the same number of primes (namely 3) between 9^2 and 10^2 as between 9 and 2*9, so 9 is a term.
		

References

  • M. Aigner and C. M. Ziegler, Proofs from The Book, Chapter 2, Springer, NY, 2001.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 5th ed., Oxford Univ. Press, 1989, p. 19.
  • S. Ramanujan, Collected Papers of Srinivasa Ramanujan (G. H. Hardy, S. Aiyar, P. Venkatesvara and B. M. Wilson, eds.), Amer. Math. Soc., Providence, 2000, pp. 208-209. [Jonathan Sondow, Aug 03 2008]

Crossrefs

Programs

  • Maple
    with(numtheory): A143224:=n->`if`(pi((n+1)^2)-pi(n^2) = pi(2*n)-pi(n), n, NULL): seq(A143224(n), n=0..2000); # Wesley Ivan Hurt, Jul 25 2017
  • Mathematica
    L={}; Do[If[PrimePi[(n+1)^2]-PrimePi[n^2] == PrimePi[2n]-PrimePi[n], L=Append[L,n]], {n,0,2000}]; L
    (* Second program *)
    With[{nn = 2000}, {0}~Join~Position[#, {0}][[All, 1]] &@ Map[Differences, Transpose@ {Differences@ Array[PrimePi[#^2] &, nn], Array[PrimePi[2 #] - PrimePi[#] &, nn - 1]}]] (* Michael De Vlieger, Jul 25 2017 *)
  • PARI
    is(n) = primepi((n+1)^2)-primepi(n^2)==primepi(2*n)-primepi(n) \\ Felix Fröhlich, Jul 25 2017

Formula

A143223(a(n)) = 0.