A143228 Triangle read by rows, T(n,k) = p(n) * p(k), where p(n) = the number of partitions of n, for 0 <= k <= n.
1, 1, 1, 2, 2, 4, 3, 3, 6, 9, 5, 5, 10, 15, 25, 7, 7, 14, 21, 35, 49, 11, 11, 22, 33, 55, 77, 121, 15, 15, 30, 45, 75, 105, 165, 225, 22, 22, 44, 66, 110, 154, 242, 330, 484, 30, 30, 60, 90, 150, 210, 330, 450, 660, 900, 42, 42, 84, 126, 210, 294, 462, 630, 924, 1260, 1764
Offset: 0
Examples
First few rows of the triangle: 1; 1, 1; 2, 2, 4; 3, 3, 6, 9; 5, 5, 10, 15, 25; 7, 7, 14, 21, 35, 49; 11, 11, 22, 33, 55, 77, 121; 15, 15, 30, 45, 75, 105, 165, 225; ... T(7,4) = 75 = p(7) * p(4) = 15 * 5.
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A143228:= func< n,k | NumberOfPartitions(n)*NumberOfPartitions(k) >; [A143228(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 27 2024
-
Mathematica
Table[PartitionsP[n]*PartitionsP[k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 27 2024 *)
-
SageMath
def A143215(n,k): return number_of_partitions(n)*number_of_partitions(k) flatten([[A143215(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 27 2024