A143235 Triangle read by rows: T(n,k) = tau(n)*tau(k), the product of the number of divisors.
1, 2, 4, 2, 4, 4, 3, 6, 6, 9, 2, 4, 4, 6, 4, 4, 8, 8, 12, 8, 16, 2, 4, 4, 6, 4, 8, 4, 4, 8, 8, 12, 8, 16, 8, 16, 3, 6, 6, 9, 6, 12, 6, 12, 9, 4, 8, 8, 12, 8, 16, 8, 16, 12, 16, 2, 4, 4, 6, 4, 8, 4, 8, 6, 8, 4, 6, 12, 12, 18, 12, 24, 12, 24, 18, 24, 12, 36, 2, 4, 4, 6, 4, 8, 4, 8, 6, 8, 4, 12, 4
Offset: 1
Examples
First few rows of the triangle = 1; 2, 4; 2, 4, 4; 3, 6, 6, 9; 2, 4, 4, 6, 4; 4, 8, 8, 12, 8, 16; 2, 4, 4, 6, 4, 8, 4; 4, 8, 8, 12, 8, 16, 8, 16; 3, 6, 6, 9, 6, 12, 6, 12, 9; ... T(9,6) = 12 = d(9)*d(6) = 3*4.
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Programs
-
Magma
A143235:= func< n,k | NumberOfDivisors(n)*NumberOfDivisors(k) >; [A143235(n,k): k in [1..n], n in [1..14]]; // G. C. Greubel, Sep 12 2024
-
Mathematica
A143235[n_, k_]:= DivisorSigma[0, n]*DivisorSigma[0, k]; Table[A143235[n, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Sep 12 2024 *)
-
SageMath
def A143235(n,k): return sigma(n,0)*sigma(k,0) flatten([[A143235(n,k) for k in range(1,n+1)] for n in range(1,15)]) # G. C. Greubel, Sep 12 2024
Comments