A143237 Triangle read by rows, T(n, k) = A000203(n)*A000203(k), for n >= 1, 1 <= k <= n.
1, 3, 9, 4, 12, 16, 7, 21, 28, 49, 6, 18, 24, 42, 36, 12, 36, 48, 84, 72, 144, 8, 24, 32, 56, 48, 96, 64, 15, 45, 60, 105, 90, 180, 120, 225, 13, 39, 52, 91, 78, 156, 104, 195, 169, 18, 54, 72, 126, 108, 216, 144, 270, 234, 324, 12, 36, 48, 84, 72, 144, 96, 180, 156, 216, 144
Offset: 1
Examples
First few rows of the triangle = 1; 3, 9; 4, 12, 16; 7, 21, 28, 49; 6, 18, 24, 42, 36; 12, 36, 48, 84, 72, 144; 8, 24, 32, 56, 48, 96, 64; 15, 45, 60, 105, 90, 180, 120, 225; 13, 39, 52, 91, 78, 156, 104, 195, 169; ... T(6,3) = 48 = sigma(6)*sigma(3) = 12*4
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Programs
-
Magma
A143237:= func< n,k | DivisorSigma(1,n)*DivisorSigma(1,k) >; [A143237(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Sep 12 2024
-
Mathematica
A143237[n_, k_]:= DivisorSigma[1,n]*DivisorSigma[1,k]; Table[A143237[n,k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Sep 12 2024 *)
-
SageMath
def A143237(n,k): return sigma(n,1)*sigma(k,1) flatten([[A143237(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Sep 12 2024
Formula
Extensions
New title by G. C. Greubel, Sep 12 2024