cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A143238 a(n) = A000203(n) * A024916(n).

Original entry on oeis.org

1, 12, 32, 105, 126, 396, 328, 840, 897, 1566, 1188, 3556, 1974, 3960, 4536, 6820, 4284, 10803, 5940, 14238, 11872, 14652, 10344, 29460, 16182, 23688, 24160, 36960, 20700, 54864, 25408, 53991, 43440, 51786, 48336, 99918, 43168, 71760, 70112, 120780, 58128, 142080
Offset: 1

Views

Author

Gary W. Adamson, Aug 01 2008

Keywords

Examples

			a(4) = 105 = A000203(4) * A024916(4) = 7 * 15.
a(4) = 105 = sum of row 4 terms of triangle A143237: (7, + 21, + 28 + 49).
		

Crossrefs

Programs

  • Magma
    A143238:= func< n | DivisorSigma(1,n)*(&+[k*Floor(n/k): k in [1..n]]) >;
    [A143238(n): n in [1..100]]; // G. C. Greubel, Sep 12 2024
    
  • Mathematica
    sigma = Table[DivisorSigma[1, n], {n, 1, 50}]; sigma * Accumulate[sigma] (* Amiram Eldar, Feb 26 2020 *)
  • Python
    from math import isqrt
    from sympy import divisor_sigma
    def A143238(n): return (-(s:=isqrt(n))**2*(s+1) + sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1)*divisor_sigma(n) # Chai Wah Wu, Oct 23 2023
    
  • SageMath
    def A143238(n): return sigma(n,1)*sum(k*int(n//k) for k in range(1,n+1))
    [A143238(n) for n in range(1,101)] # G. C. Greubel, Sep 12 2024

Formula

a(n) = A000203(n) * A024916(n).
a(n) = Sum_{k=1..n} A143237(n, k).

Extensions

More terms from Amiram Eldar, Feb 26 2020
Showing 1-1 of 1 results.