cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A054658 Primes beginning 1, 3, 7, 9 whose reversals are nonprimes.

Original entry on oeis.org

19, 103, 109, 127, 137, 139, 163, 173, 193, 197, 307, 317, 331, 349, 367, 379, 397, 719, 773, 911, 947, 977, 997, 1013, 1019, 1039, 1049, 1051, 1063, 1087, 1093, 1117, 1123, 1129, 1163, 1171, 1187, 1277, 1289, 1291, 1297, 1303, 1307, 1319, 1327, 1361
Offset: 1

Views

Author

Enoch Haga, Apr 18 2000

Keywords

Comments

Or, primes whose reversals are composites ending in 1,3,7,9. - Lekraj Beedassy, Aug 02 2008
A subsequence of A143260. - Lekraj Beedassy, Aug 02 2008

Examples

			a(1)=19 because its reverse is a nonprime, 91.
		

Crossrefs

Programs

  • Mathematica
    pbQ[p_]:=MemberQ[{1,3,7,9},IntegerDigits[p][[1]]]&&CompositeQ[IntegerReverse[p]]; Select[Prime[Range[300]],pbQ] (* Harvey P. Dale, Dec 02 2024 *)

Extensions

Edited by N. J. A. Sloane, Aug 29 2008 at the suggestion of R. J. Mathar

A345389 Primes that are not emirps but whose digit reversal is a power of an emirp.

Original entry on oeis.org

9049, 9631, 125329, 148249, 180289, 1000651, 1027591, 1250023, 1460479, 1674931, 1825891, 1889221, 3989683, 9003703, 9041143, 9049231, 10612219, 14499601, 14663479, 16333459, 18005983, 18428101, 90876631, 98087809, 98873821, 100720513, 100922011, 101274443, 108344311, 121623511, 123736969
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jun 17 2021

Keywords

Examples

			a(3) = 125329 is a term because it is prime and its reversal 923521 = 31^4 where 31 is an emirp.
		

Crossrefs

Programs

  • Maple
    revdigs:= proc(n) local L,i; L:= convert(n,base,10); add(L[-i]*10^(i-1),i=1..nops(L)) end proc:
    isemirp:= proc(n) local r; if not isprime(n) then return false fi;
    r:= revdigs(n); r <> n and isprime(r) end proc:
    E:= select(isemirp, [seq(i,i=11..10^5,2)]):
    EP:= map(proc(x) local i; seq(x^i,i=2..floor(log[x](10^10))) end proc,E):
    EPR:= map(revdigs,EP):
    sort(select(isprime,EPR));
Showing 1-2 of 2 results.