A143266 Triangle read by rows: with a(n,m,k) defined in A091969: T(n,m)=a(n, 2^(n - 1), 2^(m - 1)).
1, 1, 1, 0, 1, 1, 0, 1, 4, 4, 0, 0, 4, 28, 28, 0, 0, 0, 76, 550, 550, 0, 0, 0, 0, 4465, 28456, 28456, 0, 0, 0, 0, 1, 828038, 4134861, 4134861, 0, 0, 0, 0, 0, 4205, 473635054, 1781622569, 1781622569
Offset: 1
Examples
{1}, {1, 1}, {0, 1, 1}, {0, 1, 4, 4}, {0, 0, 4, 28, 28}, {0, 0, 0, 76, 550, 550}, {0, 0, 0, 0, 4465, 28456, 28456}, {0, 0, 0, 0, 1, 828038, 4134861, 4134861}, {0, 0, 0, 0, 0, 4205, 473635054, 1781622569, 1781622569}
Crossrefs
Cf. A091969.
Programs
-
Mathematica
Clear[a, l, s, p, n]; a[1, s_, p_] := a[1, s, p] = If[1 <= s <= p, 1, 0]; a[n_, s_, p_] := a[n, s, p] = If[s < 2^(n - 1), 0, Sum[a[n - 1, s - k, Min[p, k]], {k, 1, Min[p, s]}]]; Table[Table[ a[n, 2^(n - 1), 2^(m - 1)], {m, 1, n}], {n, 1, 9}]; Flatten[%]
Formula
With a(n,m,k) defined in A091969: T(n,m)=a(n, 2^(n - 1), 2^(m - 1)).
Extensions
Edited by Michel Marcus and Joerg Arndt, Apr 22 2013
Comments