A143270 a(n) = n*A002088(n).
1, 4, 12, 24, 50, 72, 126, 176, 252, 320, 462, 552, 754, 896, 1080, 1280, 1632, 1836, 2280, 2560, 2940, 3300, 3956, 4320, 5000, 5512, 6210, 6776, 7830, 8340, 9548, 10368, 11352, 12240, 13440, 14256, 15984, 17100, 18486, 19600, 21730, 22764, 25112
Offset: 1
Keywords
Examples
a(4) = 24 = n*A002088(n) = 4*6. a(4) = 24 = sum of row 4 terms of triangle A143269: (4 + 4 + 8 + 8). a(3) = #{1/3,1/2,2/3,1,4/3,3/2,5/3,2,7/3,5/2,8/3,3} = 12. - _Reinhard Zumkeller_, Jan 15 2009
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Module[{nn=50,ps},ps=Accumulate[EulerPhi[Range[nn]]];Times@@@Thread[{Range[nn],ps}]] (* Harvey P. Dale, Jun 04 2023 *)
-
PARI
list(nmax) = {my(s = vector(nmax, k, eulerphi(k))); for(k = 2, nmax, s[k] += s[k-1]); for(k = 1, nmax, s[k] = k*s[k]); s} \\ Amiram Eldar, Jun 01 2025
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A143270(n): # based on second formula in A018805 if n == 0: return 0 c, j = 0, 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c += (j2-j)*(2*A143270(k1)//k1-1) j, k1 = j2, n//j2 return n*(n*(n-1)-c+j)//2 # Chai Wah Wu, Mar 25 2021
Formula
Equals row sums of triangle A143269.
a(n) = Sum_{i=1..n} Sum_{j=1..i*n} 0^(gcd(i,j)-1). - Reinhard Zumkeller, Jan 15 2009
a(n) = (3/Pi^2) * n^3 + O(n^2*log(n)). - Amiram Eldar, Jun 01 2025
Extensions
More terms from Reinhard Zumkeller, Jan 15 2009
Comments