A143281 Number of binary words of length n containing at least one subword 101 and no subword 11.
0, 0, 0, 1, 2, 4, 8, 15, 27, 48, 84, 145, 248, 421, 710, 1191, 1989, 3309, 5487, 9073, 14966, 24634, 40472, 66384, 108729, 177858, 290610, 474364, 773615, 1260643, 2052818, 3340662, 5433345, 8832432, 14351403, 23309326, 37844645, 61423513, 99663191, 161665653
Offset: 0
Keywords
Examples
a(6)=8 because 8 binary words of length 6 have at least one substring 101 and no substring 11: 000101, 001010, 010100, 101000, 010101, 101010, 101001, 100101.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
a:= n-> coeff(series(x^3/((x^2+x-1)*(x^3+x-1)), x, n+1), x, n): seq(a(n), n=0..60);
-
Mathematica
CoefficientList[Series[x^3/((x^2+x-1)*(x^3+x-1)), {x, 0, 50}], x] (* G. C. Greubel, Apr 28 2017 *)
-
PARI
x='x+O('x^50); concat([0,0,0], Vec(x^3/((x^2+x-1)*(x^3+x-1)))) \\ G. C. Greubel, Apr 28 2017