cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143282 Number of binary words of length n containing at least one subword 1001 and no subwords 10^{i}1 with i<2.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 3, 5, 9, 15, 24, 38, 60, 94, 146, 225, 345, 527, 802, 1216, 1838, 2771, 4168, 6256, 9372, 14016, 20929, 31208, 46476, 69133, 102726, 152494, 226171, 335169, 496320, 734440, 1086102, 1605187, 2371049, 3500522, 5165573, 7619251
Offset: 0

Views

Author

Alois P. Heinz, Aug 04 2008

Keywords

Examples

			a(7) = 5 because 5 binary words of length 7 have at least one subword 1001 and no subwords 11 or 101: 0001001, 0010010, 0100100, 1001000, 1001001.
		

Crossrefs

Cf. A000930, A003269, 2nd column of A143291.

Programs

  • Maple
    a:= n-> (Matrix (7, (i, j)-> `if` (i=j-1, 1, `if` (i=7, [-1, 0, -1, 0, 1, -1, 2][j], 0)))^n. <<(0$6), 1>>)[3, 1]: seq (a(n), n=0..50);
  • Mathematica
    CoefficientList[Series[x^4/((x^3+x-1)*(x^4+x-1)), {x,0,50}], x] (* G. C. Greubel, Apr 29 2017 *)
  • PARI
    x='x+O('x^50); concat([0,0,0,0], Vec(x^4/((x^3+x-1)*(x^4+x-1)))) \\ G. C. Greubel, Apr 29 2017

Formula

G.f.: x^4/((x^3+x-1)*(x^4+x-1)).
a(n) = A000930(n+2) - A003269(n+4).