cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143285 Number of binary words of length n containing at least one subword 1000001 and no subwords 10^{i}1 with i<5.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 8, 12, 18, 26, 36, 48, 63, 83, 111, 150, 203, 273, 364, 482, 636, 839, 1108, 1464, 1933, 2548, 3352, 4402, 5774, 7568, 9914, 12980, 16983, 22204, 29008, 37870, 49408, 64425, 83963, 109373, 142406, 185331, 241088, 313486
Offset: 0

Views

Author

Alois P. Heinz, Aug 04 2008

Keywords

Examples

			a(8)=2 because 2 binary words of length 8 have at least one subword 1000001 and no subwords 10^{i}1 with i<5: 01000001, 10000010.
		

Crossrefs

Cf. A005708, A005709, 5th column of A143291.

Programs

  • Magma
    [n le 7 select 0 else n le 13 select n-7 else 2*Self(n-1)-Self(n-2) +Self(n-6)-Self(n-8)-Self(n-13): n in [1..60]]; // Vincenzo Librandi, Jun 05 2013
  • Maple
    a:= n-> coeff(series(x^7/((x^6+x-1)*(x^7+x-1)), x, n+1), x, n):
    seq(a(n), n=0..60);
  • Mathematica
    CoefficientList[Series[x^7 / ((x^6 + x - 1) (x^7 + x - 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 04 2013 *)

Formula

G.f.: x^7/((x^6+x-1)*(x^7+x-1)).
a(n) = A005708(n+5) - A005709(n+6).
a(n) = 2*a(n-1) -a(n-2) +a(n-6) -a(n-8) -a(n-13). - Vincenzo Librandi, Jun 05 2013