cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A143291 Triangle T(n,k), n>=2, 0<=k<=n-2, read by rows: numbers of binary words of length n containing at least one subword 10^{k}1 and no subwords 10^{i}1 with i

Original entry on oeis.org

1, 3, 1, 8, 2, 1, 19, 4, 2, 1, 43, 8, 3, 2, 1, 94, 15, 5, 3, 2, 1, 201, 27, 9, 4, 3, 2, 1, 423, 48, 15, 6, 4, 3, 2, 1, 880, 84, 24, 10, 5, 4, 3, 2, 1, 1815, 145, 38, 16, 7, 5, 4, 3, 2, 1, 3719, 248, 60, 24, 11, 6, 5, 4, 3, 2, 1, 7582, 421, 94, 35, 17, 8, 6, 5, 4, 3, 2, 1, 15397, 710, 146, 51, 25, 12, 7, 6, 5, 4, 3, 2, 1
Offset: 2

Views

Author

Alois P. Heinz, Aug 04 2008

Keywords

Comments

T(n,k) = number of subset S of {1,2,...,n+1} such that |S| > 1 and min(S*) = k, where S* is the set {x(2)-x(1), x(3)-x(2), ..., x(h+1)-x(h)} when the elements of S are written as x(1) < x(2) < ... < x(h+1); if max(S*) is used in place of min(S*), the result is the array at A255874. - Clark Kimberling, Mar 08 2015

Examples

			T (5,1) = 4, because there are 4 words of length 5 containing at least one subword 101 and no subword 11: 00101, 01010, 10100, 10101.
Triangle begins:
    1;
    3,  1;
    8,  2,  1;
   19,  4,  2, 1;
   43,  8,  3, 2, 1;
   94, 15,  5, 3, 2, 1;
  201, 27,  9, 4, 3, 2, 1;
  423, 48, 15, 6, 4, 3, 2, 1;
		

Crossrefs

Row sums are in A000295.
Cf. A141539.

Programs

  • Magma
    R:= PowerSeriesRing(Integers(), 50);
    A143291:= func< n,k | Coefficient(R!( x^k/((x^(k-1) +x-1)*(x^k +x-1)) ), n) >;
    [A143291(n,k): k in [2..n], n in [2..12]]; // G. C. Greubel, Jun 01 2025
    
  • Maple
    as:= proc (n, k) option remember;
           if k=0 then 2^n
         elif n<=k and n>=0 then n+1
         elif n>0 then as(n-1, k) +as(n-k-1, k)
         else as(n+1+k, k) -as(n+k, k)
           fi
         end:
    T:= (n, k)-> as(n, k) -as(n, k+1):
    seq(seq(T(n, k), k=0..n-2), n=2..15);
  • Mathematica
    as[n_, k_] := as[n, k] = Which[ k == 0, 2^n, n <= k && n >= 0, n+1, n > 0, as[n-1, k] + as[n-k-1, k], True, as[n+1+k, k] - as[n+k, k] ]; t [n_, k_] := as[n, k] - as[n, k+1]; Table[Table[t[n, k], {k, 0, n-2}], {n, 2, 14}] // Flatten (* Jean-François Alcover, Dec 11 2013, translated from Maple *)
  • SageMath
    @CachedFunction
    def b(n,k):
        if k==0: return 2^n
        elif n <= k and n>=0: return n+1
        elif n>0: return b(n-1,k) + b(n-k-1,k)
        else: return b(n+k+1,k) - b(n+k,k)
    def A143291(n,k): return b(n,k) - b(n,k+1)
    print(flatten([[A143291(n,k) for k in range(n-1)] for n in range(2,16)])) # G. C. Greubel, Jun 01 2025

Formula

G.f. of column k: x^(k+2) / ((x^(k+1)+x-1)*(x^(k+2)+x-1)).
Showing 1-1 of 1 results.