A143304 Decimal expansion of Norton's constant.
0, 6, 5, 3, 5, 1, 4, 2, 5, 9, 2, 3, 0, 3, 7, 3, 2, 1, 3, 7, 8, 7, 8, 2, 6, 2, 6, 7, 6, 3, 1, 0, 7, 9, 3, 0, 8, 1, 3, 0, 2, 4, 5, 3, 6, 8, 4, 9, 4, 2, 3, 7, 9, 7, 6, 5, 9, 0, 7, 1, 4, 4, 9, 6, 8, 1, 5, 7, 7, 0, 7, 5, 8, 0, 5, 4, 3, 1, 9, 9, 4, 9, 4, 6, 9, 4, 2, 0, 6, 8, 7, 1, 6, 3, 6, 4, 5, 5, 8, 9, 9, 7, 4, 2, 3
Offset: 0
Examples
0.06535142592303732137...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 157.
Links
- Graham H. Norton, On the asymptotic analysis of the Euclidean algorithm, J. Symbolic Comput., Vol. 10 (1990), pp. 53-58.
- Eric Weisstein's World of Mathematics, Norton's Constant.
Programs
-
Mathematica
RealDigits[-((Pi^2 - 6*Log[2]*(24 * Log[Glaisher] + 2*EulerGamma + Log[2] - 2 * Log[Pi] - 3))/Pi^2), 10, 100][[1]] (* Amiram Eldar, Aug 27 2020 *)
Formula
Equals -((Pi^2 - 6*log(2)*(-3 + 2*EulerGamma + log(2) + 24*log(Glaisher) - 2*log(Pi)))/Pi^2).
Equals (12*log(2)/Pi^2) * (zeta'(2)/zeta(2) - 1/2) + A086237 - 1/2. - Amiram Eldar, Aug 27 2020
Comments