cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A143467 Triangle read by rows, A143315 * A128407, 1<=k<=n.

Original entry on oeis.org

1, 3, -1, 5, 0, -1, 7, -3, 0, 0, 9, 0, 0, 0, -1, 11, -5, -3, 0, 0, 1, 13, 0, 0, 0, 0, 0, -1, 15, -7, 0, 0, 0, 0, 0, 0, 17, 0, -5, 0, 0, 0, 0, 0, 0, 19, -9, 0, 0, -3, 0, 0, 0, 0, 1, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 23, -11, -7, 0, 0, 3, 0, 0, 0, 0, 0, 0, 25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1
Offset: 1

Views

Author

Gary W. Adamson, Aug 17 2008

Keywords

Comments

Row sums = A140434: (1, 2, 4, 4, 8, 4, 12, 8, 12,...).
Right border = mu(n), A008683: (1, -1, -1, 0, -1, 1,...).

Examples

			First few rows of the triangle =
1;
3, -1;
5, 0, -1;
7, -3, 0, 0;
9, 0, 0, 0, -1;
11, -5, -3, 0, 0, 1;
13, 0, 0, 0, 0, 0, -1;
...
		

Crossrefs

Extensions

a(66) corrected by Georg Fischer, Aug 14 2023

A143316 Triangle read by rows, A054525 * A143315, 1<=k<=n.

Original entry on oeis.org

1, 2, 1, 4, 0, 1, 4, 2, 0, 1, 8, 0, 0, 0, 1, 4, 4, 2, 0, 0, 1, 12, 0, 0, 0, 0, 0, 1, 8, 4, 0, 2, 0, 0, 0, 1, 12, 0, 4, 0, 0, 0, 0, 0, 1, 8, 8, 0, 0, 2, 0, 0, 0, 0, 1, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 8, 4, 4, 4, 0, 2, 0, 0, 0, 0, 0, 1, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 12, 12, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Aug 06 2008

Keywords

Comments

Row sums = 2*n-1.
Left border = A140434: (1, 2, 4, 4, 8, 4, 12, 8,...).

Examples

			First few rows of the triangle =
1;
2, 1;
4, 0, 1;
4, 2, 0, 1;
8, 0, 0, 0, 1;
4, 4, 2, 0, 0, 1;
12, 0, 0, 0, 0, 0, 1;
8, 4, 0, 2, 0, 0, 0, 1;
...
		

Crossrefs

Extensions

a(19) corrected and more terms from Georg Fischer, Aug 14 2023

A143469 Triangle read by rows, A000012 * A143315 * A128407, 1<=k<=1.

Original entry on oeis.org

1, 4, -1, 9, -1, -1, 16, -4, -1, 0, 25, -4, -1, 0, -1, 36, -9, -4, 0, -1, 1, 49, -9, -4, 0, -1, 1, -1, 64, -16, -4, 0, -1, 1, -1, 0, 81, -16, -9, 0, -1, 1, -1, 0, 0, 100, -25, -9, 0, -4, 1, -1, 0, 0, 1, 121, -25, -9, 0, -4, 1, -1, 0, 0, 1, -1, 144, -36, -16, 0, -4, 4, -1, 0, 0, 1, -1, 0
Offset: 1

Views

Author

Gary W. Adamson, Aug 17 2008

Keywords

Comments

Row sums = A018805: (1, 3, 7, 11, 19, 23, 35,...).
Right border = mu(n), A008683.

Examples

			First few rows of the triangle =
1;
4, -1;
9, -1, -1;
16, -4, -1, 0;
25, -4, -1, 0, -1;
36, -9, -4, 0, -1, 1;
49, -9, -4, 0, -1, 1, -1;
...
		

Crossrefs

Extensions

a(9) corrected and more terms from Georg Fischer, Aug 14 2023

A129235 a(n) = 2*sigma(n) - tau(n), where tau(n) is the number of divisors of n (A000005) and sigma(n) is the sum of divisors of n (A000203).

Original entry on oeis.org

1, 4, 6, 11, 10, 20, 14, 26, 23, 32, 22, 50, 26, 44, 44, 57, 34, 72, 38, 78, 60, 68, 46, 112, 59, 80, 76, 106, 58, 136, 62, 120, 92, 104, 92, 173, 74, 116, 108, 172, 82, 184, 86, 162, 150, 140, 94, 238, 111, 180, 140, 190, 106, 232, 140, 232, 156, 176, 118, 324, 122, 188
Offset: 1

Views

Author

Gary W. Adamson, Apr 05 2007

Keywords

Comments

Row sums of A129234. - Emeric Deutsch, Apr 17 2007
Equals row sums of A130307. - Gary W. Adamson, May 20 2007
Equals row sums of triangle A143315. - Gary W. Adamson, Aug 06 2008
Equals A051731 * (1, 3, 5, 7, ...); i.e., the inverse Mobius transform of the odd numbers. Example: a(4) = 11 = (1, 1, 0, 1) * (1, 3, 5, 7) = (1 + 3 + 0 + 7), where (1, 1, 0, 1) = row 4 of A051731. - Gary W. Adamson, Aug 17 2008
Equals row sums of triangle A143594. - Gary W. Adamson, Aug 26 2008

Examples

			a(4) = 2*sigma(4) - tau(4) = 2*7 - 3 = 11.
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(2*sigma(n)-tau(n),n=1..75); # Emeric Deutsch, Apr 17 2007
    G:=sum(z^k*(k-(k-1)*z^k)/(1-z^k)^2,k=1..100): Gser:=series(G,z=0,80): seq(coeff(Gser,z,n),n=1..75); # Emeric Deutsch, Apr 17 2007
  • Mathematica
    a[n_] := DivisorSum[2n, If[EvenQ[#], #-1, 0]&]; Array[a, 70] (* Jean-François Alcover, Dec 06 2015, adapted from PARI *)
    Table[2*DivisorSigma[1,n]-DivisorSigma[0,n],{n,80}] (* Harvey P. Dale, Aug 07 2022 *)
  • PARI
    a(n)=sumdiv(2*n,d, if(d%2==0, d-1, 0 ) ); /* Joerg Arndt, Oct 07 2012 */
    
  • PARI
    a(n) = 2*sigma(n)-numdiv(n); \\ Altug Alkan, Mar 18 2018

Formula

G.f.: Sum_{k>=1} z^k*(k-(k-1)*z^k)/(1-z^k)^2. - Emeric Deutsch, Apr 17 2007
G.f.: Sum_{n>=1} x^n*(1+x^n)/(1-x^n)^2. - Joerg Arndt, May 25 2011
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(2-1/k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 18 2018
a(n) = A222548(n) - A222548(n-1). - Ridouane Oudra, Jul 11 2020

Extensions

Edited by Emeric Deutsch, Apr 17 2007
Showing 1-4 of 4 results.