A143328 Table T(n,k) read by antidiagonals. T(n,k) is the number of primitive (=aperiodic) k-ary Lyndon words (n,k >= 1) with length less than or equal to n.
1, 2, 1, 3, 3, 1, 4, 6, 5, 1, 5, 10, 14, 8, 1, 6, 15, 30, 32, 14, 1, 7, 21, 55, 90, 80, 23, 1, 8, 28, 91, 205, 294, 196, 41, 1, 9, 36, 140, 406, 829, 964, 508, 71, 1, 10, 45, 204, 728, 1960, 3409, 3304, 1318, 127, 1, 11, 55, 285, 1212, 4088, 9695, 14569, 11464, 3502, 226, 1
Offset: 1
Examples
T(3,2) = 5, because 5 words of length <=3 over 2-letter alphabet {a,b} are primitive Lyndon words: a, b, ab, aab, abb. Table begins: 1, 2, 3, 4, 5, ... 1, 3, 6, 10, 15, ... 1, 5, 14, 30, 55, ... 1, 8, 32, 90, 205, ... 1, 14, 80, 294, 829, ...
Links
Crossrefs
Programs
-
Maple
with(numtheory): f0:= proc(n) option remember; unapply(k^n-add(f0(d)(k), d=divisors(n)minus{n}), k) end: f2:= proc(n) option remember; unapply(f0(n)(x)/n, x) end: g2:= proc(n) option remember; unapply(add(f2(j)(x), j=1..n), x) end: T:= (n,k)-> g2(n)(k): seq(seq(T(n, 1+d-n), n=1..d), d=1..12);
-
Mathematica
f0[n_] := f0[n] = Function[k, k^n-Sum[f0[d][k], {d, Divisors[n]//Most}]]; f2[n_] := f2[n] = Function[x, f0[n][x]/n]; g2[n_] := g2[n] = Function[x, Sum[f2[j][x], {j, 1, n}]]; T[n_, k_] := g2[n][k]; Table[T[n, 1+d-n], {d, 1, 12}, {n, 1, d}]//Flatten (* Jean-François Alcover, Feb 12 2014, translated from Maple *)
Formula
T(n,k) = Sum_{1<=j<=n} (1/j) * Sum_{d|j} mu(j/d)*k^d.
T(n,k) = Sum_{1<=j<=n} A074650(j,k).