cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143328 Table T(n,k) read by antidiagonals. T(n,k) is the number of primitive (=aperiodic) k-ary Lyndon words (n,k >= 1) with length less than or equal to n.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 6, 5, 1, 5, 10, 14, 8, 1, 6, 15, 30, 32, 14, 1, 7, 21, 55, 90, 80, 23, 1, 8, 28, 91, 205, 294, 196, 41, 1, 9, 36, 140, 406, 829, 964, 508, 71, 1, 10, 45, 204, 728, 1960, 3409, 3304, 1318, 127, 1, 11, 55, 285, 1212, 4088, 9695, 14569, 11464, 3502, 226, 1
Offset: 1

Views

Author

Alois P. Heinz, Aug 07 2008

Keywords

Examples

			T(3,2) = 5, because 5 words of length <=3 over 2-letter alphabet {a,b} are primitive Lyndon words: a, b, ab, aab, abb.
Table begins:
  1,  2,  3,   4,   5,  ...
  1,  3,  6,  10,  15,  ...
  1,  5, 14,  30,  55,  ...
  1,  8, 32,  90, 205,  ...
  1, 14, 80, 294, 829,  ...
		

Crossrefs

Columns k=1-5 give: A000012, A062692, A114945, A114946, A114947.
Rows n=1-4 give: A000027, A000217, A000330, A132117.
Main diagonal gives A215475.

Programs

  • Maple
    with(numtheory):
    f0:= proc(n) option remember; unapply(k^n-add(f0(d)(k),
            d=divisors(n)minus{n}), k)
         end:
    f2:= proc(n) option remember; unapply(f0(n)(x)/n, x) end:
    g2:= proc(n) option remember; unapply(add(f2(j)(x), j=1..n), x) end:
    T:= (n,k)-> g2(n)(k):
    seq(seq(T(n, 1+d-n), n=1..d), d=1..12);
  • Mathematica
    f0[n_] := f0[n] = Function[k, k^n-Sum[f0[d][k], {d, Divisors[n]//Most}]]; f2[n_] := f2[n] = Function[x, f0[n][x]/n]; g2[n_] := g2[n] = Function[x, Sum[f2[j][x], {j, 1, n}]]; T[n_, k_] := g2[n][k]; Table[T[n, 1+d-n], {d, 1, 12}, {n, 1, d}]//Flatten (* Jean-François Alcover, Feb 12 2014, translated from Maple *)

Formula

T(n,k) = Sum_{1<=j<=n} (1/j) * Sum_{d|j} mu(j/d)*k^d.
T(n,k) = Sum_{1<=j<=n} A074650(j,k).