A062692
Number of irreducible polynomials over F_2 of degree at most n.
Original entry on oeis.org
2, 3, 5, 8, 14, 23, 41, 71, 127, 226, 412, 747, 1377, 2538, 4720, 8800, 16510, 31042, 58636, 111013, 210871, 401428, 766150, 1465020, 2807196, 5387991, 10358999, 19945394, 38458184, 74248451, 143522117, 277737797, 538038783, 1043325198
Offset: 1
Gary L Mullen (mullen(AT)math.psu.edu), Jul 04 2001
- G. C. Greubel, Table of n, a(n) for n = 1..3320
- P. Burcsi, G. Fici, Z. Lipták, F. Ruskey, and J. Sawada, On prefix normal words and prefix normal forms, Preprint, 2016.
- G. Fici and Zs. Lipták, On Prefix Normal Words.
- G. Fici and Zs. Lipták, On Prefix Normal Words, Developments in Language Theory 2011, Lecture Notes in Computer Science 6795, 228-238.
- Kenneth H. Hicks, Gary L. Mullen, and Ikuro Sato, Distribution of irreducible polynomials over F_2, in Finite Fields with Applications to Coding Theory, Cryptography and Related Areas (Oaxaca, 2001), 177-186, Springer, Berlin, 2002.
- M. Waldschmidt, Lectures on Multiple Zeta Values, IMSC 2011.
-
with(numtheory):for n from 1 to 113 do sum3 := 0:for m from 1 to n do sum2 := 0:a := divisors(m):for h from 1 to nops(a) do sum2 := sum2+mobius(a[h])*2^(m/a[h]):end do:sum3 := sum3+sum2/m:end do:s[n] := sum3:end do:q := seq(s[j],j=1..113);
-
a[n_] := Sum[1/m DivisorSum[m, MoebiusMu[#]*2^(m/#)&], {m, 1, n}]; Array[a, 34] (* Jean-François Alcover, Dec 07 2015 *)
f[n_] := DivisorSum[n, MoebiusMu[#] * 2^(n/#) &] / n; Accumulate[Array[f, 30]] (* Amiram Eldar, Aug 24 2023 *)
-
a(n)=sum(m=1,n, 1/m* sumdiv(m, d, moebius(d)*2^(m/d) ) ); /* Joerg Arndt, Jul 04 2011 */
A215474
Triangle read by rows: number of k-ary n-tuples (a_1,..,a_n) such that the string a_1...a_n is preprime.
Original entry on oeis.org
1, 1, 3, 1, 5, 14, 1, 8, 32, 90, 1, 14, 80, 294, 829, 1, 23, 196, 964, 3409, 9695, 1, 41, 508, 3304, 14569, 49685, 141280, 1, 71, 1318, 11464, 63319, 259475, 861580, 2447592, 1, 127, 3502, 40584, 280319, 1379195, 5345276, 17360616, 49212093, 1, 226, 9382
Offset: 1
T(4, 3) counts the 32 ternary preprimes of length 4 which are:
0000,0001,0002,0010,0011,0012,0020,0021,0022,0101,0102,
0110,0111,0112,0120,0121,0122,0202,0210,0211,0212,0220,
0221,0222,1111,1112,1121,1122,1212,1221,1222,2222.
Triangle starts (compare the table A143328 as a square array):
[1]
[1, 3]
[1, 5, 14]
[1, 8, 32, 90]
[1, 14, 80, 294, 829]
[1, 23, 196, 964, 3409, 9695]
[1, 41, 508, 3304, 14569, 49685, 141280]
- D. E. Knuth. Generating All Tuples and Permutations. The Art of Computer Programming, Vol. 4, Fascicle 2, Addison-Wesley, 2005.
-
# From Alois P. Heinz A143328.
with(numtheory):
f0 := proc(n) option remember; unapply(k^n-add(f0(d)(k),d=divisors(n) minus{n}),k) end;
f2 := proc(n) option remember; unapply(f0(n)(x)/n,x) end;
g2 := proc(n) option remember; unapply(add(f2(j)(x),j=1..n),x) end;
A215474 := (n, k) -> g2(n)(k);
seq(print(seq(A215474(n,d),d=1..n)),n=1..8);
-
t[n_, k_] := Sum[(1/j)*MoebiusMu[j/d]*k^d, {j, 1, n}, {d, Divisors[j]}]; Table[t[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 26 2013 *)
-
# This algorithm generates and counts all k-ary n-tuples
# (a_1,..,a_n) such that the string a_1...a_n is preprime.
# It is algorithm F in Knuth 7.2.1.1.
def A215474_count(n, k):
a = [0]*(n+1); a[0]=-1
j = 1; count = 0
while True:
count += 1;
j = n
while a[j] >= k-1 : j -= 1
if j == 0 : break
a[j] += 1
for i in (j+1..n): a[i] = a[i-j]
return count
def A215474(n,k):
return add((1/j)*add(moebius(j/d)*k^d for d in divisors(j)) for j in (1..n))
for n in (1..9): print([A215474(n,k) for k in (1..n)])
A114945
Number of monic irreducible polynomials over GF(3) of degree <= n.
Original entry on oeis.org
3, 6, 14, 32, 80, 196, 508, 1318, 3502, 9382, 25486, 69706, 192346, 533830, 1490406, 4180416, 11776896, 33299124, 94470780, 268807044, 766918996, 2193322744, 6286504432, 18054379372, 51945923740, 149709932740, 432139468492, 1249167599632, 3615732336352
Offset: 1
Gary L Mullen (mullen(AT)math.psu.edu) and Ken Hicks, Jan 06 2006
-
with(numtheory):
b:= n-> add(mobius(d) *3^(n/d)/n, d=divisors(n)):
a:= n-> add(b(k), k=1..n):
seq(a(n), n=1..30); # Alois P. Heinz, Sep 23 2008
-
f[n_] := DivisorSum[n, MoebiusMu[#] * 3^(n/#) &] / n; Accumulate[Array[f, 30]] (* Amiram Eldar, Aug 24 2023 *)
-
a(n)=sum(m=1,n, 1/m* sumdiv(m, d, moebius(d)*3^(m/d) ) );/* Joerg Arndt, Jul 04 2011 */
A215475
Number of n-ary n-tuples (a_1,...,a_n) such that the string a_1...a_n is preprime.
Original entry on oeis.org
1, 3, 14, 90, 829, 9695, 141280, 2447592, 49212093, 1125217654, 28823053258, 817378772782, 25417591386199, 859893804621774, 31439503146486552, 1235301513403984512, 51906185332282554369, 2322562816163062723410, 110253678955655801174716, 5534198888175777261628156
Offset: 1
a(3) = 14 = card{000, 001, 002, 010, 011, 012, 020, 021, 022, 111, 112, 121, 122, 222}.
-
a[n_] := Sum[1/j Sum[MoebiusMu[j/d] n^d, {d, Divisors[j]}], {j, n}];
Array[a, 20] (* Jean-François Alcover, Jun 27 2019 *)
-
a(n) = sum(j=1, n, sumdiv(j, d, moebius(j/d)*n^d)/j); \\ Michel Marcus, Jun 27 2019
-
def A215475(n):
return add((1/j)*add(moebius(j/d)*n^d for d in divisors(j)) for j in (1..n))
[A215475(n) for n in (1..20)]
A114946
Number of monic irreducible polynomials over GF(4) of degree <= n.
Original entry on oeis.org
4, 10, 30, 90, 294, 964, 3304, 11464, 40584, 145338, 526638, 1924378, 7086598, 26259388, 97842104, 366273464, 1376854004, 5194587924, 19661846184, 74637375132, 284068160592, 1083712790142, 4143223406562, 15871346734402, 60907343008066, 234122710710436
Offset: 1
Gary L Mullen (mullen(AT)math.psu.edu) and Ken Hicks, Jan 06 2006
-
with(numtheory):
b:= n-> add(mobius(d) *4^(n/d)/n, d=divisors(n)):
a:= n-> add(b(k), k=1..n):
seq(a(n), n=1..30); # Alois P. Heinz, Sep 23 2008
-
f[n_] := DivisorSum[n, MoebiusMu[#] * 4^(n/#) &] / n; Accumulate[Array[f, 26]] (* Amiram Eldar, Aug 24 2023 *)
-
a(n)=sum(m=1, n, 1/m* sumdiv(m, d, moebius(d)*4^(m/d) ) ); /* Joerg Arndt, Jul 04 2011 */
A114947
Number of monic irreducible polynomials over GF(5) of degree <= n.
Original entry on oeis.org
5, 15, 55, 205, 829, 3409, 14569, 63319, 280319, 1256567, 5695487, 26039187, 119939427, 555899247, 2590404239, 12127122989, 57005914349, 268933430849, 1272801132329, 6041172226049, 28747703565329, 137119782755669, 655421041672109, 3138947897124609
Offset: 1
Gary L Mullen (mullen(AT)math.psu.edu) and Ken Hicks, Jan 06 2006
-
with(numtheory):
b:= n-> add(mobius(d) *5^(n/d)/n, d=divisors(n)):
a:= n-> add(b(k), k=1..n):
seq(a(n), n=1..30); # Alois P. Heinz, Sep 23 2008
-
f[n_] := DivisorSum[n, MoebiusMu[#] * 5^(n/#) &] / n; Accumulate[Array[f, 30]] (* Amiram Eldar, Aug 24 2023 *)
-
a(n)=sum(m=1, n, 1/m* sumdiv(m, d, moebius(d)*5^(m/d) ) ); /* Joerg Arndt, Jul 04 2011 */
Showing 1-6 of 6 results.
Comments