A143331 Lengths of successive runs of 0's in the Thue-Morse sequence A010060.
1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2
Offset: 1
Examples
A010060 begins 011010011001011010010110011010011... so the runs of 0's have lengths 1 1 2 2 1 1 2 1 2 1 2 2 1 2 1 2 1 1 ...
Links
- Ray Chandler, Table of n, a(n) for n=1..10923
Programs
-
Mathematica
Map[Length,Most[Split[ThueMorse[Range[0,500]]]][[;;;;2]]] (* Paolo Xausa, Dec 19 2023 *)
-
Python
def A143331(n): if n==1: return 1 def iterfun(f,n=0): m, k = n, f(n) while m != k: m, k = k, f(k) return m def f(x): c, s = x, bin(x)[2:] l = len(s) for i in range(l&1^1,l,2): c -= int(s[i])+int('0'+s[:i],2) return c return iterfun(lambda x:f(x)+(n<<1)-1,(n<<1)-1)-iterfun(lambda x:f(x)+(n-1<<1),(n-1<<1)) # Chai Wah Wu, Jan 30 2025
Formula
a(n) = A026465(2n-1).
Comments