cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143363 Number of ordered trees with n edges and having no protected vertices. A protected vertex in an ordered tree is a vertex at least 2 edges away from its leaf descendants.

Original entry on oeis.org

1, 1, 1, 3, 6, 17, 43, 123, 343, 1004, 2938, 8791, 26456, 80597, 247091, 763507, 2372334, 7413119, 23271657, 73376140, 232238350, 737638868, 2350318688, 7510620143, 24064672921, 77294975952, 248832007318, 802737926643
Offset: 0

Views

Author

Emeric Deutsch, Aug 20 2008

Keywords

Comments

The "no protected vertices" condition can be rephrased as "every non-leaf vertex has at least one leaf child". But a(n) is also the number of ordered trees with n edges in which every non-leaf vertex has at most one leaf child. - David Callan, Aug 22 2014
Also the number of locally non-intersecting ordered rooted trees with n edges, meaning every non-leaf subtree has empty intersection. The unordered version is A007562. - Gus Wiseman, Nov 19 2022
a(n) is the number of parking functions of size n-1 avoiding the patterns 123, 132, and 213 . - Lara Pudwell, Apr 10 2023
For n>0, a(n) is the number of ways to place non-intersecting diagonals in convex n+3-gon so as to create no triangles such that none of the dividing diagonals passes through a chosen vertex. (empirical observation) - Muhammed Sefa Saydam, Feb 14 2025 and Aug 05 2025

Examples

			From _Gus Wiseman_, Nov 19 2022: (Start)
The a(0) = 1 through a(4) = 6 trees with at least one leaf directly under any non-leaf node:
  o  (o)  (oo)  (ooo)   (oooo)
                ((o)o)  ((o)oo)
                (o(o))  ((oo)o)
                        (o(o)o)
                        (o(oo))
                        (oo(o))
The a(0) = 1 through a(4) = 6 trees with at most one leaf directly under any node:
  o  (o)  ((o))  ((o)o)   (((o))o)
                 (o(o))   (((o)o))
                 (((o)))  ((o)(o))
                          ((o(o)))
                          (o((o)))
                          ((((o))))
(End)
		

Crossrefs

Cf. A143362.
For exactly one leaf directly under any node we have A006013.
The unordered version is A007562, ranked by A316470.
Allowing lone children gives A319378.
A000108 counts ordered rooted trees, unordered A000081.
A358453 counts transitive ordered trees, unordered A290689.
A358460 counts locally disjoint ordered trees, unordered A316473.

Programs

  • Maple
    p:=z^2*G^3-2*z*G^2-2*z^2*G^2+3*z*G+G+z^2*G-1-2*z=0: G:=RootOf(p,G): Gser:= series(G,z=0,33): seq(coeff(Gser,z,n),n=0..28);
  • Mathematica
    a[n_Integer] := a[n] = Round[SeriesCoefficient[2 (x + 1 - Sqrt[x^2 - x + 1] Cos[ArcTan[(3 x Sqrt[12 x^3 - 96 x^2 - 24 x + 15])/(2 x^3 - 30 x^2 - 3 x + 2)]/3])/(3 x), {x, 0, n}]]; Table[a[n], {n, 0, 20}] (* Vladimir Reshetnikov, Apr 10 2022 *)
    RecurrenceTable[{25 (n + 5) (n + 6) a[n + 5] - 10 (n + 5) (5 n + 21) a[n + 4] - 2 (77 n^2 + 613 n + 1185) a[n + 3] + 2 (50 n^2 + 253 n + 312) a[n + 2] + 4 (2 n + 1) (7 n + 9) a[n + 1] - 4 n (2 n + 1) a[n] == 0, a[0] == 1, a[1] == 1, a[2] == 1, a[3] == 3, a[4] == 6}, a[n], {n, 0, 27}] (* Vladimir Reshetnikov, Apr 11 2022 *)
    ait[n_]:=ait[n]=If[n==1,{{}},Join@@Table[Select[Tuples[ait/@c],MemberQ[#,{}]&],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[ait[n]],{n,15}] (* Gus Wiseman, Nov 19 2022 *)

Formula

a(n) = A143362(n,0) for n>=1.
G.f.: G=G(z) satisfies z^2*G^3-2z(1+z)G^2+(1+3z+z^2)G-(1+2z)=0.
G.f.: (x+1-sqrt(x^2-x+1)*cos(arctan((3*x*sqrt(12*x^3-96*x^2-24*x+15))/(2*x^3-30*x^2-3*x+2))/3))*2/(3*x). - Vladimir Reshetnikov, Apr 10 2022
Recurrence: 25*(n+5)*(n+6)*a(n+5) - 10*(n+5)*(5*n+21)*a(n+4) - 2*(77*n^2+613*n+1185)*a(n+3) + 2*(50*n^2+253*n+312)*a(n+2) + 4*(2*n+1)*(7*n+9)*a(n+1) - 4*n*(2*n+1)*a(n) = 0. - Vladimir Reshetnikov, Apr 11 2022
From Muhammed Sefa Saydam, Jul 12 2025: (Start)
a(n) = Sum_{k=2..n+2} A046736(k) * A046736(n-k+3) , for n >= 0 and A046736(1) = 1.
a(n) = A049125(n) + Sum_{k=1..n-2} A049125(k) * A046736(n-k+2), for n >= 3.
a(n) = A049125(n) + Sum_{k=1..n-2} a(k) * a(n-k-1), for n >= 3. (End)