A143366 Wiener index of the hexagon crown (beehive model) with n hexagons on each side of the outside ring.
27, 1002, 7809, 33204, 101751, 253758, 549213, 1071720, 1932435, 3274002, 5274489, 8151324, 12165231, 17624166, 24887253, 34368720, 46541835, 61942842, 81174897, 104912004, 133902951, 168975246, 211039053, 261091128, 320218755
Offset: 1
Keywords
Examples
a(1)=27 because in the hexagon ABCDEF the binomial(6,2)=15 distances are AB=BC=CD=DE=EF=FA=1, AC=BD=CE=DF=EA=FB=2, AD=BE=CF=3 and their sum is 27.
Links
- Bo-Yin Yang and Yeong-Nan Yeh, A Crowning Moment for Wiener Indices, Studies in Appl. Math., 112 (2004), 333-340.
- Index entries for linear recurrences with constant coefficients, signature (6, -15, 20, -15, 6, -1).
Programs
-
Maple
W:=proc(n) options operator, arrow: (164/5)*n^5-6*n^3+(1/5)*n end proc; seq(W(n),n=1..25); with(GraphTheory); G := Graph([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 8}, {8, 9}, {9, 10}, {10, 11}, {11, 12}, {12, 13}, {13, 14}, {14, 15}, {15, 16}, {16, 17}, {17, 18}, {1, 18}, {2, 19}, {5, 20}, {8, 21}, {11, 22}, {14, 23}, {17, 24}, {19, 20}, {20, 21}, {21, 22}, {22, 23}, {23, 24}, {19, 24}}); d := AllPairsDistance(G); with(LinearAlgebra); n := 24; add(add(d[i, j], j = i .. n), i = 1 .. n);
-
Mathematica
Table[n (164n^4-30n^2+1)/5,{n,30}] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{27,1002,7809,33204,101751,253758},30] (* Harvey P. Dale, Jun 09 2024 *)
-
PARI
a(n) = n*(164*n^4-30*n^2+1)/5; \\ Michel Marcus, Jan 17 2019
Formula
a(n) = n(164n^4-30n^2+1)/5.
G.f.: 3x(9+280x+734x^2+280x^3+9x^4)/(1-x)^6. [R. J. Mathar, Sep 05 2008]
Comments