A143376 Triangle read by rows: T(n,k) is the number of unordered pairs of vertices at distance k in the cube Q_n of dimension n (1 <= k <= n).
1, 4, 2, 12, 12, 4, 32, 48, 32, 8, 80, 160, 160, 80, 16, 192, 480, 640, 480, 192, 32, 448, 1344, 2240, 2240, 1344, 448, 64, 1024, 3584, 7168, 8960, 7168, 3584, 1024, 128, 2304, 9216, 21504, 32256, 32256, 21504, 9216, 2304, 256, 5120, 23040, 61440, 107520
Offset: 1
Examples
T(2,1)=4, T(2,2)=2 because in Q_2 (a square) there are 4 distances equal to 1 and 2 distances equal to 2. Triangle starts: 1; 4, 2; 12, 12, 4; 32, 48, 32, 8; 80, 160, 160, 80, 16;
Links
- Indranil Ghosh, Rows 1..125, flattened
- B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
Programs
-
Maple
T:=proc(n,k) options operator, arrow: 2^(n-1)*binomial(n,k) end proc: for n to 10 do seq(T(n,k),k=1..n) end do; # yields sequence in triangular form
-
Mathematica
nn = 8; A[u_, z_] := (z + u z)/(1 - (z + u z)); Drop[Map[Select[#, # > 0 &] &, Map[Drop[#, 1] &,CoefficientList[Series[1/(1 - A[u, z]), {z, 0, nn}], {z, u}]]],1] // Grid (* Geoffrey Critzer, Mar 04 2017 *) Flatten[Table[2^(n-1) Binomial[n, k], {n, 10},{k,n}]] (* Indranil Ghosh, Mar 06 2017 *)
-
PARI
tabl(nn) = {for (n=1, nn, for(k=1, n, print1(2^(n-1) * binomial(n, k),", ");); print();); }; tabl(10); \\ Indranil Ghosh, Mar 06 2017
-
Python
import math f=math.factorial def C(n,r): return f(n) / f(r) / f(n-r) i=1 for n in range(1,126): for k in range(1,n+1): print(str(i)+" "+str(2**(n-1)*C(n,k))) i+=1 # Indranil Ghosh, Mar 06 2017
Formula
T(n,k) = 2^(n-1)*binomial(n,k).
G.f.: G(q,z) = qz/((1-2z)(1-2z-2zq)).
T(n,k) = A055372(n,k). - Philippe Deléham, Oct 14 2008
Extensions
Typo corrected by Philippe Deléham, Jan 05 2009
Comments