cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143376 Triangle read by rows: T(n,k) is the number of unordered pairs of vertices at distance k in the cube Q_n of dimension n (1 <= k <= n).

Original entry on oeis.org

1, 4, 2, 12, 12, 4, 32, 48, 32, 8, 80, 160, 160, 80, 16, 192, 480, 640, 480, 192, 32, 448, 1344, 2240, 2240, 1344, 448, 64, 1024, 3584, 7168, 8960, 7168, 3584, 1024, 128, 2304, 9216, 21504, 32256, 32256, 21504, 9216, 2304, 256, 5120, 23040, 61440, 107520
Offset: 1

Views

Author

Emeric Deutsch, Sep 05 2008

Keywords

Comments

Sum of entries in row n = 2^(n-1)*(2^n-1) = A006516.
The entries in row n are the coefficients of the Wiener polynomial of the cube Q_n.
Sum_{k=1..n} k*T(n,k) = n*4^(n-1) = A002697(n) = the Wiener index of the cube Q_n.
Triangle T(n,k), 1 <= k <= n, read by rows given by [1,1,0,0,0,0,0,...]DELTA[1,1,0,0,0,0,0,...] where DELTA is the operator defined in A084938; subtriangle of triangle A055372. - Philippe Deléham, Oct 14 2008

Examples

			T(2,1)=4, T(2,2)=2 because in Q_2 (a square) there are 4 distances equal to 1 and 2 distances equal to 2.
Triangle starts:
   1;
   4,   2;
  12,  12,   4;
  32,  48,  32,   8;
  80, 160, 160,  80,  16;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) options operator, arrow: 2^(n-1)*binomial(n,k) end proc: for n to 10 do seq(T(n,k),k=1..n) end do; # yields sequence in triangular form
  • Mathematica
    nn = 8; A[u_, z_] := (z + u z)/(1 - (z + u z));
    Drop[Map[Select[#, # > 0 &] &, Map[Drop[#, 1] &,CoefficientList[Series[1/(1 - A[u, z]), {z, 0, nn}], {z, u}]]],1] // Grid (* Geoffrey Critzer, Mar 04 2017 *)
    Flatten[Table[2^(n-1) Binomial[n, k], {n, 10},{k,n}]] (* Indranil Ghosh, Mar 06 2017 *)
  • PARI
    tabl(nn) = {for (n=1, nn, for(k=1, n, print1(2^(n-1) * binomial(n, k),", ");); print();); };
    tabl(10); \\ Indranil Ghosh, Mar 06 2017
    
  • Python
    import math
    f=math.factorial
    def C(n,r): return f(n) / f(r) / f(n-r)
    i=1
    for n in range(1,126):
        for k in range(1,n+1):
            print(str(i)+" "+str(2**(n-1)*C(n,k)))
            i+=1 # Indranil Ghosh, Mar 06 2017

Formula

T(n,k) = 2^(n-1)*binomial(n,k).
G.f.: G(q,z) = qz/((1-2z)(1-2z-2zq)).
T(n,k) = A055372(n,k). - Philippe Deléham, Oct 14 2008

Extensions

Typo corrected by Philippe Deléham, Jan 05 2009