A143399 Expansion of x^k/Product_{t=k..2k} (1-tx) for k=4.
0, 0, 0, 0, 1, 30, 545, 7770, 95781, 1071630, 11192665, 111095490, 1060634861, 9822843030, 88799732385, 787259974410, 6869327386741, 59158464019230, 503954741177705, 4254156112792530, 35637875826743421, 296621138907400230, 2455329298857576625
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..350
- Index entries for sequences related to rooted trees
- Index entries for linear recurrences with constant coefficients, signature (30, -355, 2070, -5944, 6720).
Crossrefs
4th column of A143395.
Programs
-
Maple
a:= proc(k::nonnegint) local M; M := Matrix(k+1, (i,j)-> if (i=j-1) then 1 elif j=1 then [seq(-1* coeff(product(1-t*x, t=k..2*k), x, u), u=1..k+1)][i] else 0 fi); p-> (M^p)[1, k+1] end(4): seq(a(n), n=0..30);
-
Mathematica
LinearRecurrence[{30,-355,2070,-5944,6720},{0,0,0,0,1},30] (* Harvey P. Dale, Mar 12 2013 *)
Formula
G.f.: x^4/((1-4x)(1-5x)(1-6x)(1-7x)(1-8x)).
a(n) = 30a(n-1) -355a(n-2) +2070a(n-3) -5944a(n-4) +6720a(n-5).
E.g.f.: exp(4*x)*((exp(x)-1)^4)/4!. - Wolfdieter Lang, Oct 08 2011
Comments