A143406 Number of forests of labeled rooted trees of height at most 1, with n labels, where each root contains a nonempty set of labels of equal size, also row sums of A143398.
1, 1, 4, 14, 55, 252, 1319, 7737, 50040, 351636, 2659375, 21519027, 185279186, 1688183135, 16206401020, 163376811610, 1724624368377, 19011582728772, 218312877627483, 2605840967052663, 32271957793959066, 413991491885677105, 5492584623675060620
Offset: 0
Keywords
Examples
a(2) = 4, because 4 forests with 2 labels exist: {1}{2}, {1}<-2, {2}<-1, {1,2}.
Links
Programs
-
Maple
a:= n-> if n=0 then 1 else n! * add(add(i^(n-k*i)/ ((n-k*i)!*i!*k!^i), i=1..floor(n/k)), k=1..n) fi: seq(a(n), n=0..30);
Formula
a(n) = 1 if n=0 and a(n) = n! * Sum_{k=1..n} Sum_{i=1..floor(n/k)} i^(n-k*i)/ ((n-k*i)!*i!*k!^i) else.