cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143411 Square array, read by antidiagonals: form the Euler-Seidel matrix for the sequence {2^k*k!} and then divide column k by 2^k*k!.

Original entry on oeis.org

1, 3, 1, 13, 5, 1, 79, 33, 7, 1, 633, 277, 61, 9, 1, 6331, 2849, 643, 97, 11, 1, 75973, 34821, 7993, 1225, 141, 13, 1, 1063623, 493825, 114751, 17793, 2071, 193, 15, 1, 17017969, 7977173, 1870837, 292681, 34361, 3229, 253, 17, 1
Offset: 0

Views

Author

Peter Bala, Aug 19 2008

Keywords

Comments

This table is closely connected to the constant 1/sqrt(e). The row, column and diagonal entries of this table occur in series acceleration formulas for 1/sqrt(e). For a similar table based on the differences of the sequence {2^k*k!} and related to the constant sqrt(e), see A143410. For other arrays similarly related to constants see A086764 (for e), A143409 (for 1/e), A008288 (for log(2)), A108625 (for zeta(2)) and A143007 (for zeta(3)).

Examples

			The Euler-Seidel matrix for the sequence {2^k*k!} begins
  ========================================
  n\k|     0     1     2     3     4     5
  ========================================
  0  |     1     2     8    48   384  3840
  1  |     3    10    56   432  4224
  2  |    13    66   488  4656
  3  |    79   554  5144
  4  |   633  5698
  5  |  6331
  ...
.
  Dividing the k-th column by 2^k*k! gives
  ========================================
  n\k|     0     1     2     3     4     5
  ========================================
  0  |     1     1     1     1     1     1
  1  |     3     5     7     9    11
  2  |    13    33    61    97
  3  |    79   277   643
  4  |   633  2849
  5  |  6331
  ...
		

Crossrefs

Programs

  • Magma
    A:= func< n,k | (&+[Binomial(n,j)*Factorial(k+j)*2^j/Factorial(k): j in [0..n]]) >; // Array
    A143411:= func< n,k | A(n-k,k) >; // antidiagonal triangle
    [A143411(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 05 2023
    
  • Maple
    with combinat: T := (n, k) -> 1/k!*add(2^j*binomial(n,j)*(k+j)!, j = 0..n): for n from 0 to 9 do seq(T(n, k), k = 0..9) end do;
  • Mathematica
    A[n_, k_]:= (1/k!)*Sum[Binomial[n,j]*(k+j)!*2^j, {j,0,n}]; (* array *)
    A143411[n_, k_]:= A[n-k,k]; (* antidiagonals *)
    Table[A143411[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 05 2023 *)
  • SageMath
    def A(n,k): return sum(binomial(n,j)*factorial(j+k)*2^j/factorial(k) for j in range(n+1)) # array
    def A143411(n,k): return A(n-k,k) # antidiagonal triangle
    flatten([[A143411(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 05 2023

Formula

T(n,k) = (1/k!)*Sum_{j = 0..n} 2^j*binomial(n,j)*(k+j)!.
Relation with Poisson-Charlier polynomials c_n(x,a):
T(n,k) = (-1)^n*c_n(-(k+1),1/2).
Recurrence relations:
T(n,k) = 2*n*T(n-1,k) + T(n,k-1);
T(n,k) = 2*(n+k)*T(n-1,k) + T(n-1,k-1);
T(n,k) = 2*(k+1)*T(n-1,k+1) + T(n-1,k).
Recurrence for row n entries: 2*k*T(n,k) = (2*n+2*k-1)*T(n,k-1) + T(n,k-2).
E.g.f. for column k: exp(y)/(1 - 2*y)^(k+1).
E.g.f. for array: exp(y)/(1 - x - 2*y) = (1 + x + x^2 + ...) + (3 + 5*x + 7*x^2 + ...)*y + (13 + 37*x + 61*x^2 + ...)*y^2/2! + ... .
Series acceleration formulas for 1/sqrt(e):
Row n: 1/sqrt(e) = 2^n*n!*(1/T(n,0) - 1/(2*1!*T(n,0)*T(n,1)) + 1/(2^2*2!*T(n,1)*T(n,2)) - 1/(2^3*3!*T(n,2)*T(n,3)) + ...). For example, row 3 gives 1/sqrt(e) = 48*(1/79 - 1/(2*79*277) + 1/(8*277*643) - 1/(48*643*1225) + ...).
Column k: 1/sqrt(e) = (1 - (1/2)/1! + (1/2)^2/2! - ... + (-1/2)^k/k!) + (-1)^(k+1)/(2^k*k!)*( Sum_{n = 0..inf} 2^n*n!/(T(n,k)*T(n+1,k)) ). For example, column 3 gives 1/sqrt(e) = 29/48 + 1/48*( 1/(1*9) + 2/(9*97) + 8/(97*1225) + 48/(1225*17793) + ... ).
Main diagonal: 1/sqrt(e) = 1 - 2*( 1/(1*5) - 1/(5*61) + 1/(61*1225) - ... ). See A065919.