A143413 Apéry-like numbers for the constant e: a(n) = 1/(n-1)!*Sum_{k = 0..n+1} (-1)^k*C(n+1,k)*(2*n-k)! for n >= 1.
-1, 1, 11, 181, 3539, 81901, 2203319, 67741129, 2346167879, 90449857081, 3843107102339, 178468044946621, 8994348275804891, 488964835817842021, 28523735794360301039, 1777328098986754744081, 117817961601577138782479, 8279178465722546926265329
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..365
- A. van der Poorten, A proof that Euler missed ... Apery's proof of the irrationality of zeta(3). An informal report., Math. Intelligencer 1 (1978/79), no 4, 195-203.
Crossrefs
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
Programs
-
Maple
a := n -> 1/(n-1)!*add((-1)^k*binomial(n+1,k)*(2*n-k)!, k = 0..n+1): seq(a(n), n = 1..19); # Alternative a := n -> `if`(n<2, 2*n-1, (2*n)!/(n-1)!*hypergeom([-n-1], [-2*n], -1)): seq(simplify(a(n)), n=0..17); # Peter Luschny, Nov 14 2018
-
Mathematica
Join[{-1}, Table[(1/(n-1)!)*Sum[(-1)^k*Binomial[n+1,k]*(2*n-k)!, {k, 0, n+1}], {n, 1, 50}]] (* G. C. Greubel, Oct 24 2017 *)
-
PARI
concat([-1], for(n=1,25, print1((1/(n-1)!)*sum(k=0,n+1, (-1)^k*binomial(n+1,k)*(2*n-k)!), ", "))) \\ G. C. Greubel, Oct 24 2017
Formula
a(0):= -1, a(n) = 1/(n-1)!*sum {k = 0..n+1} (-1)^k*C(n+1,k)*(2*n-k)! for n >= 1.
Apart from the initial term, this sequence is the second superdiagonal of the square array A060475; equivalently, the second subdiagonal of the square array A086764.
Recurrence relation: a(0) = -1, a(1) = 1, (n-1)^2*a(n) - n^2*a(n-2) = (2*n-1)*(2*n^2-2*n+1)*a(n-1), n >= 2.
Let b(n) denote the solution to this recurrence with initial conditions b(0) = 0, b(1) = 2. Then b(n) = A143414(n) = 1/(n-1)!*sum {k = 0..n-1} C(n-1,k)*(2*n-k)!. The rational number b(n)/a(n) is equal to the Padé approximation to exp(x) of degree (n-1,n+1) evaluated at x = 1 and b(n)/a(n) -> e very rapidly.
For example, b(100)/a(100) - e is approximately 1.934 * 10^(-436). The identity b(n)*a(n-1) - b(n-1)*a(n) = (-1)^n *2*n^2 leads to rapidly converging series for e and 1/e: e = 2 * Sum_{n >= 1} (-1)^n * n^2/(a(n)*a(n-1)) = 2*[1 + 2^2/(1*11) - 3^2/(11*181) + 4^2/(181*3539) - ...]; 1/e = 1/2 - 2*Sum_{n >= 2} (-1)^n * n^2/(b(n)*b(n-1)) = 1/2 - 2*[2^2/(2*30) - 3^2/(30*492) + 4^2/(492*9620) - ...].
Conjectural congruences: for r >= 0 and odd prime p, calculation suggests that a(p^r*(p+1)) + a(p^r) == 0 (mod p^(r+1)).
a(n) = ((2*n)!/(n-1)!)*hypergeom([-n-1], [-2*n], -1) for n >= 2. - Peter Luschny, Nov 14 2018
a(n) ~ 2^(2*n + 1/2) * n^(n+1) / exp(n + 1/2). - Vaclav Kotesovec, Jul 11 2021
Comments