cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143415 Another sequence of Apery-like numbers for the constant 1/e: a(n) = 1/(n+1)!*Sum_{k = 0..n-1} C(n-1,k)*(2*n-k)!.

Original entry on oeis.org

0, 1, 5, 41, 481, 7421, 142601, 3288205, 88577021, 2731868921, 94969529101, 3675200329841, 156725471006105, 7302990263511541, 369216917569411601, 20130327811188977621, 1177435382675193700021, 73546210385434763486705
Offset: 0

Views

Author

Peter Bala, Aug 14 2008

Keywords

Comments

This sequence is a modified version of A143414.

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Maple
    a := n -> 1/(n+1)!*add (binomial(n-1,k)*(2*n-k)!,k = 0..n-1): seq(a(n),n = 0..19);
    # Alternative:
    A143415 := n -> `if`(n=0, 0, ((2*n)!/(n+1)!)*hypergeom([1-n], [-2*n], 1)):
    seq(simplify(A143415(n)), n = 0..17); # Peter Luschny, May 14 2020
  • Mathematica
    Table[(1/(n+1)!)*Sum[Binomial[n-1,k]*(2*n-k)!, {k,0,n-1}], {n,0,50}] (* G. C. Greubel, Oct 24 2017 *)
  • PARI
    for(n=0,25, print1((1/(n+1)!)*sum(k=0,n-1, binomial(n-1,k)*(2*n-k)!), ", ")) \\ G. C. Greubel, Oct 24 2017

Formula

a(n) = 1/(n+1)!*sum {k = 0..n-1} C(n-1,k)*(2*n-k)!.
a(n) = 1/(n*(n+1))*A143414(n) for n > 0.
Recurrence relation: a(0) = 0, a(1) = 1, (n-1)*(n+1)*a(n) - (n-2)*n*a(n-2) = (2*n-1)*(2*n^2-2*n+1)*a(n-1) for n >= 2. 1/e = 1/2 - 2 * Sum_{n = 1..inf} (-1)^(n+1)/(n*(n+2)*a(n)*a(n+1)) = 1/2 - 2*[1/(3*1*5) - 1/(8*5*41) + 1/(15*41*481) - 1/(24*481*7421) + ...] .
Conjectural congruences: for r >= 0 and prime p, calculation suggests the congruences a(p^r*(p+1)) == a(p^r) (mod p^(r+1)) may hold.
a(n) = ((2*n)!/(n+1)!)*hypergeom([1-n], [-2*n], 1) for n > 0. - Peter Luschny, May 14 2020