cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A083650 Expansion of f(-x, x^3) * phi(x^2) in powers of x where phi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, -1, 2, -1, 0, 2, -1, 0, 0, -2, -1, 2, -2, 0, -2, 1, 0, 2, 0, -2, 0, 1, 0, 0, -2, 0, 0, 0, -1, -2, 2, 0, 2, 0, 0, 2, 3, 0, 0, -2, 0, 0, -2, 0, 2, -1, 2, 0, 0, 0, 2, -2, 0, -2, 2, 1, -2, 2, 0, 0, 0, 0, 0, 0, 0, 2, -1, 0, 0, 0, 0, -2, 2, 0, -2, 2, 0, -2, -1, 0, -2, 0, -2, 0, -2, 0, 0, 4, 0, 0, 0, 1, 0, 0, 0, -2, -2, 0, 0, 0, 2, 2, 0, 0, -2
Offset: 0

Views

Author

Michael Somos, May 01 2003

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Essentially the expansion of eta(q)*eta(q^2). Cf. A010815. - N. J. A. Sloane, Feb 18 2010
A030204, A083650 and A138514 are the same except for signs. - N. J. A. Sloane, May 07 2010

Examples

			G.f. = 1 - x + 2*x^2 - x^3 + 2*x^5 - x^6 - 2*x^9 - x^10 + 2*x^11 - 2*x^12 - 2*x^14 + ...
G.f. = q - q^9 + 2*q^17 - q^25 + 2*q^41 - q^49 + 2*q^73 - q^81 + 2*q^89 - 2*q^97 + ...
		

Crossrefs

Programs

  • Mathematica
    QP = QPochhammer; s = QP[q]*QP[q^2] + O[q]^105; Table[(-1)^Quotient[n, 2]*Coefficient[s, q, n], {n, 0, 105}] (* Jean-François Alcover, Nov 27 2015, adapted from PARI *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); (-1)^(n\2) * polcoeff( eta(x + A) * eta(x^2 + A), n))}; /* Michael Somos, Mar 02 2010 */

Formula

Euler transform of period 16 sequence [ -1, 2, 1, -2, 1, 1, -1, -3, -1, 1, 1, -2, 1, 2, -1, -2, ...].
G.f.: (Sum_{k>=0} (-1)^(k + [k/4]) * x^(k*(k+1)/2)) * (Sum_k x^(2*k^2)).
(-1)^[n/2] * a(n) = A030204(n).

Extensions

Revised by Michael Somos, Mar 02 2010

A143434 Expansion of f(x, -x^3) in powers of x where f(,) is Ramanujan's two-variable theta function.

Original entry on oeis.org

1, 1, 0, -1, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Aug 14 2008

Keywords

Examples

			1 + x - x^3 - x^6 - x^10 - x^15 + x^21 + x^28 + x^36 + x^45 - x^55 - x^66 + ...
q + q^9 - q^25 - q^49 - q^81 - q^121 + q^169 + q^225 + q^289 + q^361 + ...
		

Crossrefs

Cf. A143433.

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ (Series[ EllipticTheta[ 3, Log[y] / (2 I), I x^2], {x, 0, n + Floor@Sqrt[n]}] // Normal // TrigToExp) /. {y -> I x}, {x, 0, n}]]
  • PARI
    {a(n) = if( n<0, 0, if( issquare( 8*n + 1, &n), n = n\2; (-1)^((n + 2) \ 4), 0))}
    
  • PARI
    {a(n) = local(A); if( n<0, 0, polcoeff( prod( k=1, n, (1 - x^k)^( [1, -1, 1, 1, -1, 1, 0, -1, 2, -1, 0, 1, -1, 1, 1, -1] [k%16 + 1]), 1 + x * O(x^n)), n))}

Formula

Euler transform of period 16 sequence [ 1, -1, -1, 1, -1, 0, 1, -2, 1, 0, -1, 1, -1, -1, 1, -1, ...].
G.f.: Sum_{k>=0} (-1)^floor((k + 2) / 4) * x^(k * (k+1) / 2).
a(n) = (-1)^n * A143433(n).
Showing 1-2 of 2 results.