cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A143461 Square array A(n,k) of numbers of length n quaternary words with at least k 0-digits between any other digits (n,k >= 0), read by antidiagonals.

Original entry on oeis.org

1, 1, 4, 1, 4, 16, 1, 4, 7, 64, 1, 4, 7, 19, 256, 1, 4, 7, 10, 40, 1024, 1, 4, 7, 10, 22, 97, 4096, 1, 4, 7, 10, 13, 43, 217, 16384, 1, 4, 7, 10, 13, 25, 73, 508, 65536, 1, 4, 7, 10, 13, 16, 46, 139, 1159, 262144, 1, 4, 7, 10, 13, 16, 28, 76, 268, 2683, 1048576, 1, 4, 7, 10, 13, 16, 19, 49, 115, 487, 6160, 4194304
Offset: 0

Views

Author

Alois P. Heinz, Aug 16 2008

Keywords

Examples

			A (3,1) = 19, because 19 quaternary words of length 3 have at least 1 0-digit between any other digits: 000, 001, 002, 003, 010, 020, 030, 100, 101, 102, 103, 200, 201, 202, 203, 300, 301, 301, 303.
Square array A(n,k) begins:
       1,   1,   1,  1,  1,  1,  1,  1,  ...
       4,   4,   4,  4,  4,  4,  4,  4,  ...
      16,   7,   7,  7,  7,  7,  7,  7,  ...
      64,  19,  10, 10, 10, 10, 10, 10,  ...
     256,  40,  22, 13, 13, 13, 13, 13,  ...
    1024,  97,  43, 25, 16, 16, 16, 16,  ...
    4096, 217,  73, 46, 28, 19, 19, 19,  ...
   16384, 508, 139, 76, 49, 31, 22, 22,  ...
		

Crossrefs

Columns k=0-9 give: A000302, A006130(n+1), A084386(n+2), A143454, A143455, A143456, A143457, A143458, A143459, A143460.
Main diagonal gives A016777.

Programs

  • Maple
    A:= proc(n, k) option remember; if k=0 then 4^n elif n<=k+1 then 3*n+1 else A(n-1, k) +3*A(n-k-1, k) fi end: seq(seq(A(n, d-n), n=0..d), d=0..13);
  • Mathematica
    a[n_, 0] := 4^n; a[n_, k_] /; n <= k+1 := 3*n+1; a[n_, k_] := a[n, k] = a[n-1, k] + 3*a[n-k-1, k]; Table[a[n-k, k], {n, 0, 13}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jan 15 2014, after Maple *)

Formula

G.f. of column k: 1/(x^k*(1-x-3*x^(k+1))).
A(n,k) = 4^n if k=0, else A(n,k) = 3*n+1 if n<=k+1, else A(n,k) = A(n-1,k) + 3*A(n-k-1,k).

A193517 T(n,k) = number of ways to place any number of 5X1 tiles of k distinguishable colors into an nX1 grid.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 4, 5, 4, 1, 1, 1, 1, 5, 7, 7, 5, 1, 1, 1, 1, 6, 9, 10, 9, 6, 1, 1, 1, 1, 7, 11, 13, 13, 11, 8, 1, 1, 1, 1, 8, 13, 16, 17, 16, 17, 11, 1, 1, 1, 1, 9, 15, 19, 21, 21, 28, 27, 15, 1, 1, 1, 1, 10, 17, 22, 25, 26, 41, 49, 41, 20, 1, 1, 1
Offset: 1

Views

Author

R. H. Hardin, with proof and formula from Robert Israel in the Sequence Fans Mailing List, Jul 29 2011

Keywords

Comments

Table starts:
..1..1...1...1...1...1...1....1....1....1....1....1....1....1....1....1....1
..1..1...1...1...1...1...1....1....1....1....1....1....1....1....1....1....1
..1..1...1...1...1...1...1....1....1....1....1....1....1....1....1....1....1
..1..1...1...1...1...1...1....1....1....1....1....1....1....1....1....1....1
..2..3...4...5...6...7...8....9...10...11...12...13...14...15...16...17...18
..3..5...7...9..11..13..15...17...19...21...23...25...27...29...31...33...35
..4..7..10..13..16..19..22...25...28...31...34...37...40...43...46...49...52
..5..9..13..17..21..25..29...33...37...41...45...49...53...57...61...65...69
..6.11..16..21..26..31..36...41...46...51...56...61...66...71...76...81...86
..8.17..28..41..56..73..92..113..136..161..188..217..248..281..316..353..392
.11.27..49..77.111.151.197..249..307..371..441..517..599..687..781..881..987
.15.41..79.129.191.265.351..449..559..681..815..961.1119.1289.1471.1665.1871
.20.59.118.197.296.415.554..713..892.1091.1310.1549.1808.2087.2386.2705.3044
.26.81.166.281.426.601.806.1041.1306.1601.1926.2281.2666.3081.3526.4001.4506

Examples

			Some solutions for n=11 k=3; colors=1, 2, 3; empty=0
..0....2....2....0....0....1....0....3....3....0....0....0....0....3....1....0
..0....2....2....0....1....1....3....3....3....3....2....3....1....3....1....1
..0....2....2....0....1....1....3....3....3....3....2....3....1....3....1....1
..3....2....2....0....1....1....3....3....3....3....2....3....1....3....1....1
..3....2....2....0....1....1....3....3....3....3....2....3....1....3....1....1
..3....1....0....2....1....0....3....3....0....3....2....3....1....0....0....1
..3....1....3....2....1....1....2....3....2....0....0....3....0....3....0....2
..3....1....3....2....1....1....2....3....2....0....0....3....0....3....0....2
..0....1....3....2....1....1....2....3....2....0....0....3....0....3....0....2
..0....1....3....2....1....1....2....3....2....0....0....3....0....3....0....2
..0....0....3....0....1....1....2....0....2....0....0....3....0....3....0....2
		

Crossrefs

Column 1 is A003520,
Column 2 is A143447(n-4),
Column 3 is A143455(n-4),
Row 10 is A028884.

Programs

  • Maple
    T:= proc(n, k) option remember;
          `if`(n<0, 0,
          `if`(n<5 or k=0, 1, k*T(n-5, k) +T(n-1, k)))
        end:
    seq(seq(T(n, d+1-n), n=1..d), d=1..13); # Alois P. Heinz, Jul 29 2011
  • Mathematica
    T[n_, k_] := T[n, k] = If[n<0, 0, If[n < 5 || k == 0, 1, k*T[n-5, k]+T[n-1, k]]]; Table[Table[T[n, d+1-n], {n, 1, d}], {d, 1, 14}] // Flatten (* Jean-François Alcover, Mar 04 2014, after Alois P. Heinz *)

Formula

With z X 1 tiles of k colors on an n X 1 grid (with n >= z), either there is a tile (of any of the k colors) on the first spot, followed by any configuration on the remaining (n-z) X 1 grid, or the first spot is vacant, followed by any configuration on the remaining (n-1) X 1. So T(n,k) = T(n-1,k) + k*T(n-z,k), with T(n,k) = 1 for n=0,1,...,z-1. The solution is T(n,k) = sum_r r^(-n-1)/(1 + z k r^(z-1)) where the sum is over the roots of the polynomial k x^z + x - 1.
T(n,k) = sum {s=0..[n/5]} (binomial(n-4*s,s)*k^s).
For z X 1 tiles, T(n,k,z) = sum{s=0..[n/z]} (binomial(n-(z-1)*s,s)*k^s). - R. H. Hardin, Jul 31 2011
Showing 1-2 of 2 results.