A143461 Square array A(n,k) of numbers of length n quaternary words with at least k 0-digits between any other digits (n,k >= 0), read by antidiagonals.
1, 1, 4, 1, 4, 16, 1, 4, 7, 64, 1, 4, 7, 19, 256, 1, 4, 7, 10, 40, 1024, 1, 4, 7, 10, 22, 97, 4096, 1, 4, 7, 10, 13, 43, 217, 16384, 1, 4, 7, 10, 13, 25, 73, 508, 65536, 1, 4, 7, 10, 13, 16, 46, 139, 1159, 262144, 1, 4, 7, 10, 13, 16, 28, 76, 268, 2683, 1048576, 1, 4, 7, 10, 13, 16, 19, 49, 115, 487, 6160, 4194304
Offset: 0
Examples
A (3,1) = 19, because 19 quaternary words of length 3 have at least 1 0-digit between any other digits: 000, 001, 002, 003, 010, 020, 030, 100, 101, 102, 103, 200, 201, 202, 203, 300, 301, 301, 303. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, ... 4, 4, 4, 4, 4, 4, 4, 4, ... 16, 7, 7, 7, 7, 7, 7, 7, ... 64, 19, 10, 10, 10, 10, 10, 10, ... 256, 40, 22, 13, 13, 13, 13, 13, ... 1024, 97, 43, 25, 16, 16, 16, 16, ... 4096, 217, 73, 46, 28, 19, 19, 19, ... 16384, 508, 139, 76, 49, 31, 22, 22, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
Crossrefs
Programs
-
Maple
A:= proc(n, k) option remember; if k=0 then 4^n elif n<=k+1 then 3*n+1 else A(n-1, k) +3*A(n-k-1, k) fi end: seq(seq(A(n, d-n), n=0..d), d=0..13);
-
Mathematica
a[n_, 0] := 4^n; a[n_, k_] /; n <= k+1 := 3*n+1; a[n_, k_] := a[n, k] = a[n-1, k] + 3*a[n-k-1, k]; Table[a[n-k, k], {n, 0, 13}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jan 15 2014, after Maple *)
Formula
G.f. of column k: 1/(x^k*(1-x-3*x^(k+1))).
A(n,k) = 4^n if k=0, else A(n,k) = 3*n+1 if n<=k+1, else A(n,k) = A(n-1,k) + 3*A(n-k-1,k).
Comments