A143492 Unsigned 3-Stirling numbers of the first kind.
1, 3, 1, 12, 7, 1, 60, 47, 12, 1, 360, 342, 119, 18, 1, 2520, 2754, 1175, 245, 25, 1, 20160, 24552, 12154, 3135, 445, 33, 1, 181440, 241128, 133938, 40369, 7140, 742, 42, 1, 1814400, 2592720, 1580508, 537628, 111769, 14560, 1162, 52, 1, 19958400
Offset: 3
Examples
Triangle begins n\k|.....3.....4.....5.....6.....7.....8 ======================================== 3..|.....1 4..|.....3.....1 5..|....12.....7.....1 6..|....60....47....12.....1 7..|...360...342...119....18.....1 8..|..2520..2754..1175...245....25.....1 ... T(5,4) = 7. The permutations of {1,2,3,4,5} with 4 cycles such that 1, 2 and 3 belong to different cycles are: (14)(2)(3)(5), (15)(2)(3)(4), (24)(1)(3)(5), (25)(1)(3)(4), (34)(1)(2)(5), (35)(1)(2)(4) and (45)(1)(2)(3).
Links
- Broder Andrei Z., The r-Stirling numbers, Discrete Math. 49, 241-259 (1984)
- A. Dzhumadildaev and D. Yeliussizov, Path decompositions of digraphs and their applications to Weyl algebra, arXiv preprint arXiv:1408.6764v1, 2014. [Version 1 contained many references to the OEIS, which were removed in Version 2. - _N. J. A. Sloane_, Mar 28 2015]
- Askar Dzhumadil’daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
- Erich Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Discrete Math. 239 No. 1-3, 33-51 (2001).
- Michael J. Schlosser and Meesue Yoo, Elliptic Rook and File Numbers, Electronic Journal of Combinatorics, 24(1) (2017), #P1.31.
Crossrefs
Programs
-
Maple
with combinat: T := (n, k) -> (n-3)! * add(binomial(n-j-1,2)*abs(stirling1(j,k-3))/j!,j = k-3..n-3): for n from 3 to 12 do seq(T(n, k), k = 3..n) end do;
Formula
T(n,k) = (n-3)! * Sum_{j = k-3 .. n-3} C(n-j-1,2)*|Stirling1(j,k-3)|/j!.
Recurrence relation: T(n,k) = T(n-1,k-1) + (n-1)*T(n-1,k) for n > 3, with boundary conditions: T(n,2) = T(2,n) = 0, for all n; T(3,3) = 1; T(3,k) = 0 for k > 3.
Special cases:
T(n,3) = (n-1)!/2! for n >= 3.
T(n,4) = (n-1)!/2!*(1/3 + ... + 1/(n-1)) for n >= 3.
T(n,k) = Sum_{3 <= i_1 < ... < i_(n-k) < n} (i_1*i_2* ...*i_(n-k)). For example, T(6,4) = Sum_{3 <= i < j < 6} (i*j) = 3*4 + 3*5 + 4*5 = 47.
Row g.f.: Sum_{k = 3..n} T(n,k)*x^k = x^3*(x+3)*(x+4)* ... *(x+n-1).
E.g.f. for column (k+3): Sum_{n = k..inf} T(n+3,k+3)*x^n/n! = 1/k!*1/(1-x)^3 * (log(1/(1-x)))^k.
E.g.f.: (1/(1-t))^(x+3) = Sum_{n = 0..inf} Sum_{k = 0..n} T(n+3,k+3)*x^k*t^n/n! = 1 + (3+x)*t/1! + (12+7*x+x^2)*t^2/2! + ....
This array is the matrix product St1 * P^2, where St1 denotes the lower triangular array of unsigned Stirling numbers of the first kind, abs(A008275) and P denotes Pascal's triangle, A007318. The row sums are n!/3! ( A001715 ). The alternating row sums are (n-2)!.
If we define f(n,i,a) = sum(binomial(n,k)*Stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then T(n,i) = |f(n,i,3)|, for n=1,2,...;i=0...n. - Milan Janjic, Dec 21 2008
Comments