cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A143495 Triangle read by rows: 3-Stirling numbers of the second kind.

Original entry on oeis.org

1, 3, 1, 9, 7, 1, 27, 37, 12, 1, 81, 175, 97, 18, 1, 243, 781, 660, 205, 25, 1, 729, 3367, 4081, 1890, 380, 33, 1, 2187, 14197, 23772, 15421, 4550, 644, 42, 1, 6561, 58975, 133057, 116298, 47271, 9702, 1022, 52, 1, 19683, 242461, 724260, 830845, 447195
Offset: 3

Views

Author

Peter Bala, Aug 20 2008

Keywords

Comments

This is the case r = 3 of the r-Stirling numbers of the second kind. The 3-Stirling numbers of the second kind give the number of ways of partitioning the set {1,2,...,n} into k nonempty disjoint subsets with the restriction that the elements 1, 2 and 3 belong to distinct subsets. For remarks on the general case see A143494 (r = 2). The corresponding array of 3-Stirling numbers of the first kind is A143492. The theory of r-Stirling numbers of both kinds is developed in [Broder]. For 3-Lah numbers refer to A143498.
From Peter Bala, Sep 19 2008: (Start)
Let D be the derivative operator d/dx and E the Euler operator x*d/dx. Then x^(-3)*E^n*x^3 = Sum_{k = 0..n} T(n+3,k+3)*x^k*D^k.
The row generating polynomials R_n(x) := Sum_{k= 3..n} T(n,k)*x^k satisfy the recurrence R_(n+1)(x) = x*R_n(x) + x*d/dx(R_n(x)) with R_3(x) = x^3. It follows that the polynomials R_n(x) have only real zeros (apply Corollary 1.2. of [Liu and Wang]).
Relation with the 3-Eulerian numbers E_3(n,j) := A144697(n,j): T(n,k) = (3!/k!)*Sum_{j = n-k..n-3} E_3(n,j)*binomial(j,n-k) for n >= k >= 3.
(End)
T(n,k) = S(n,k,3), n>=k>=3, in Mikhailov's first paper, eq.(28) or (A3). E.g.f. column k from (A20) with k->3, r->k. Therefore, with offset [0,0], this triangle is the Sheffer triangle (exp(3*x),exp(x)-1) with e.g.f. of column no. m>=0: exp(3*x)*((exp(x)-1)^m)/m!. See one of the formulas given below. For Sheffer matrices see the W. Lang link under A006232 with the S. Roman reference, also found in A132393. - Wolfdieter Lang, Sep 29 2011

Examples

			Triangle begins
  n\k|....3....4....5....6....7....8
  ==================================
  3..|....1
  4..|....3....1
  5..|....9....7....1
  6..|...27...37...12....1
  7..|...81..175...97...18....1
  8..|..243..781..660..205...25....1
  ...
T(5,4) = 7. The set {1,2,3,4,5} can be partitioned into four subsets such that 1, 2 and 3 belong to different subsets in 7 ways: {{1}{2}{3}{4,5}}, {{1}{2}{5}{3,4}}, {{1}{2}{4}{3,5}}, {{1}{3}{4}{2,5}}, {{1}{3}{5}{2,4}}, {{2}{3}{4}{1,5}} and {{2}{3}{5}{1,4}}.
From _Peter Bala_, Feb 23 2025: (Start)
The array factorizes as
/ 1               \       /1             \ /1             \ /1            \
| 3    1           |     | 3   1          ||0  1           ||0  1          |
| 9    7   1       |  =  | 9   4   1      ||0  3   1       ||0  0  1       | ...
|27   37  12   1   |     |27  13   5  1   ||0  9   4  1    ||0  0  3  1    |
|81  175  97  18  1|     |81  40  18  6  1||0 27  13  5  1 ||0  0  9  4  1 |
|...               |     |...             ||...            ||...           |
where, in the infinite product on the right-hand side, the first array is the Riordan array (1/(1 - 3*x), x/(1 - x)). See A106516. (End)
		

Crossrefs

Cf. A005061 (column 4), A005494 (row sums), A008277, A016753 (column 5), A028025 (column 6), A049458 (matrix inverse), A106516, A143492, A143494, A143496, A143498.

Programs

  • Maple
    A143495 := (n, k) -> (1/(k-3)!)*add((-1)^(k-i-1)*binomial(k-3,i)*(i+3)^(n-3), i = 0..k-3): for n from 3 to 12 do seq(A143495(n, k), k = 3..n) end do;
  • Mathematica
    nmax = 12; t[n_, k_] := 1/(k-3)!* Sum[ (-1)^(k-j-1)*Binomial[k-3, j]*(j+3)^(n-3), {j, 0, k-3}]; Flatten[ Table[ t[n, k], {n, 3, nmax}, {k, 3, n}]] (* Jean-François Alcover, Dec 07 2011, after Maple *)
  • Sage
    @CachedFunction
    def stirling2r(n, k, r) :
        if n < r: return 0
        if n == r: return 1 if k == r else 0
        return stirling2r(n-1, k-1, r) + k*stirling2r(n-1, k, r)
    A143495 = lambda n, k: stirling2r(n, k, 3)
    for n in (3..8): [A143495(n, k) for k in (3..n)] # Peter Luschny, Nov 19 2012

Formula

T(n+3,k+3) = (1/k!)*Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i)*(i+3)^n, n,k >= 0.
T(n,k) = Stirling2(n,k) - 3*Stirling2(n-1,k) + 2*Stirling2(n-2,k), n,k >= 3.
Recurrence relation: T(n,k) = T(n-1,k-1) + k*T(n-1,k) for n > 3, with boundary conditions: T(n,2) = T(2,n) = 0 for all n; T(3,3) = 1; T(3,k) = 0 for k > 3.
Special cases: T(n,3) = 3^(n-3); T(n,4) = 4^(n-3) - 3^(n-3).
E.g.f. (k+3) column (with offset 3): (1/k!)*exp(3x)*(exp(x)-1)^k.
O.g.f. k-th column: Sum_{n >= k} T(n,k)*x^n = x^k/((1-3*x)*(1-4*x)*...*(1-k*x)).
E.g.f.: exp(3*t + x*(exp(t)-1)) = Sum_{n >= 0} Sum_{k = 0..n} T(n+3,k+3)*x^k*t^n/n! = Sum_{n >= 0} B_n(3;x)*t^n/n! = 1 + (3+x)*t/1! + (9+7*x+x^2)*t^2/2! + ..., where the row polynomials, B_n(3;x) := Sum_{k = 0..n} T(n+3,k+3)*x^k, may be called the 3-Bell polynomials.
Dobinski-type identities: Row polynomial B_n(3;x) = exp(-x)*Sum_{i >= 0} (i+3)^n*x^i/i!; Sum_{k = 0..n} k!*T(n+3,k+3)*x^k = Sum_{i >= 0} (i+3)^n*x^i/(1+x)^(i+1).
The T(n,k) are the connection coefficients between the falling factorials and the shifted monomials (x+3)^(n-3). For example, 9 + 7*x + x*(x-1) = (x+3)^2 and 27 + 37*x + 12x*(x-1) + x*(x-1)*(x-2) = (x+3)^3.
This array is the matrix product P^2 * S, where P denotes Pascal's triangle, A007318 and S denotes the lower triangular array of Stirling numbers of the second kind, A008277 (apply Theorem 10 of [Neuwirth]). The inverse array is A049458, the signed 3-Stirling numbers of the first kind.

A143491 Unsigned 2-Stirling numbers of the first kind.

Original entry on oeis.org

1, 2, 1, 6, 5, 1, 24, 26, 9, 1, 120, 154, 71, 14, 1, 720, 1044, 580, 155, 20, 1, 5040, 8028, 5104, 1665, 295, 27, 1, 40320, 69264, 48860, 18424, 4025, 511, 35, 1, 362880, 663696, 509004, 214676, 54649, 8624, 826, 44, 1, 3628800, 6999840, 5753736, 2655764
Offset: 2

Views

Author

Peter Bala, Aug 20 2008

Keywords

Comments

Essentially the same as A136124 but with column numbers differing by one. See A049444 for a signed version of this array. The unsigned 2-Stirling numbers of the first kind count the permutations of the set {1,2,...,n} into k disjoint cycles, with the restriction that the elements 1 and 2 belong to distinct cycles. This is the particular case r = 2 of the unsigned r-Stirling numbers of the first kind, which count the permutations of the set {1,2,...,n} into k disjoint cycles, with the restriction that the numbers 1, 2, ..., r belong to distinct cycles. The case r = 1 gives the usual unsigned Stirling numbers of the first kind, abs(A008275); for other cases see A143492 (r = 3) and A143493 (r = 4). The corresponding 2-Stirling numbers of the second kind can be found in A143494.
In general, the lower unitriangular array of unsigned r-Stirling numbers of the first kind (with suitable offsets in the row and column indexing) equals the matrix product St1 * P^(r-1), where St1 is the array of unsigned Stirling numbers of the first kind, abs(A008275) and P is Pascal's triangle, A007318. The theory of r-Stirling numbers of both kinds is developed in [Broder]. For details of the related r-Lah numbers see A143497.
This sequence also represents the number of permutations in the alternating group An of length k, where the length is taken with respect to the generators set {(12)(ij)}. For a bijective proof of the relation between these numbers and the 2-Stirling numbers of the first kind see the Rotbart link. - Aviv Rotbart, May 05 2011
With offset n=0,k=0 : triangle T(n,k), read by rows, given by [2,1,3,2,4,3,5,4,6,5,...] DELTA [1,0,1,0,1,0,1,0,1,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Sep 29 2011
With offset n=0 and k=0, this is the Sheffer triangle (1/(1-x)^2,-log(1-x)) (in the umbral notation of S. Roman's book this would be called Sheffer for (exp(-2*t),1-exp(-t))). See the e.g.f. given below. Compare also with the e.g.f. for the signed version A049444. - Wolfdieter Lang, Oct 10 2011
Reversed rows correspond to the Betti numbers of the moduli space M(0,n) of smooth Riemann surfaces (see Murri link). - Tom Copeland, Sep 19 2012

Examples

			Triangle begins
  n\k|.....2.....3.....4.....5.....6.....7
  ========================================
  2..|.....1
  3..|.....2.....1
  4..|.....6.....5.....1
  5..|....24....26.....9.....1
  6..|...120...154....71....14.....1
  7..|...720..1044...580...155....20.....1
  ...
T(4,3) = 5. The permutations of {1,2,3,4} with 3 cycles such that 1 and 2 belong to different cycles are: (1)(2)(3 4), (1)(3)(24), (1)(4)(23), (2)(3)(14) and (2)(4)(13). The remaining possibility (3)(4)(12) is not allowed.
From _Aviv Rotbart_, May 05 2011: (Start)
Example of the alternating group permutations numbers:
Triangle begins
  n\k|.....0.....1.....2.....3.....4.....5.....6.....7
  ====================================================
  2..|.....1
  3..|.....1.....2
  4..|.....1.....5.....6
  5..|.....1.....9....26....24
  6..|.....1....14....71...154...120
  7..|.....1....20...155...580..1044..720
A(n,k) = number of permutations in An of length k, with respect to the generators set {(12)(ij)}. For example, A(2,0)=1 (only the identity is there), for A4, the generators are {(12)(13),(12)(14),(12,23),(12)(24),(12)(34)}, thus we have A(4,1)=5 (exactly 5 generators), the permutations of length 2 are:
   (12)(13)(12)(13) = (312)
   (12)(13)(12)(14) = (41)(23)
   (12)(13)(12)(24) = (432)(1)
   (12)(13)(12)(34) = (342)(1)
   (12)(23)(12)(24) = (13)(24)
   (12)(14)(12)(14) = (412)(3)
Namely, A(4,2)=6. Together with the identity [=(12)(12), of length 0. therefore A(4,0)=1] we have 12 permutations, comprising all A4 (4!/2=12). (End)
		

Crossrefs

Cf. A001705 - A001709 (column 3..7), A001710 (row sums), A008275, A049444 (signed version), A136124, A143492, A143493, A143494, A143497.
Cf. A094638.

Programs

  • Maple
    with combinat: T := (n, k) -> (n-2)! * add((n-j-1)*abs(stirling1(j,k-2))/j!,j = k-2..n-2): for n from 2 to 10 do seq(T(n, k), k = 2..n) end do;
  • Mathematica
    t[n_, k_] := (n-2)!*Sum[(n-j-1)*Abs[StirlingS1[j, k-2]]/j!, {j, k-2, n-2}]; Table[t[n, k], {n, 2, 11}, {k, 2, n}] // Flatten (* Jean-François Alcover, Apr 16 2013, after Maple *)

Formula

T(n,k) = (n-2)! * Sum_{j = k-2 .. n-2} (n-j-1)*|stirling1(j,k-2)|/j!.
Recurrence relation: T(n,k) = T(n-1,k-1) + (n-1)*T(n-1,k) for n > 2, with boundary conditions: T(n,1) = T(1,n) = 0, for all n; T(2,2) = 1; T(2,k) = 0 for k > 2.
Special cases: T(n,2) = (n-1)!; T(n,3) = (n-1)!*(1/2 + 1/3 + ... + 1/(n-1)).
T(n,k) = Sum_{2 <= i_1 < ... < i_(n-k) < n} (i_1*i_2*...*i_(n-k)). For example, T(6,4) = Sum_{2 <= i < j < 6} (i*j) = 2*3 + 2*4 + 2*5 + 3*4 + 3*5 + 4*5 = 71.
Row g.f.: Sum_{k = 2..n} T(n,k)*x^k = x^2*(x+2)*(x+3)*...*(x+n-1).
E.g.f. for column (k+2): Sum_{n>=k} T(n+2,k+2)*x^n/n! = (1/k!)*(1/(1-x)^2)*(log(1/(1-x)))^k.
E.g.f.: (1/(1-t))^(x+2) = Sum_{n>=0} Sum_{k = 0..n} T(n+2,k+2)*x^k*t^n/n! = 1 + (2+x)*t/1! + (6+5*x+x^2)*t^2/2! + ... .
This array is the matrix product St1 * P, where St1 denotes the lower triangular array of unsigned Stirling numbers of the first kind, abs(A008275) and P denotes Pascal's triangle, A007318. The row sums are n!/2 ( A001710 ). The alternating row sums are (n-2)!.
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a - j), then T(n-1,i) = |f(n,i,2)|, for n=1,2,...; i=0..n. - Milan Janjic, Dec 21 2008
From Gary W. Adamson, Jul 19 2011: (Start)
n-th row of the triangle = top row of M^(n-2), M = a reversed variant of the (1,2) Pascal triangle (Cf. A029635); as follows:
2, 1, 0, 0, 0, 0, ...
2, 3, 1, 0, 0, 0, ...
2, 5, 4, 1, 0, 0, ...
2, 7, 9, 5, 1, 0, ...
... (End)
The reversed, row polynomials of this entry multiplied by (1+x) are the row polynomials of A094638. E.g., (1+x)(1+5x+6x^2) = (1+6x+11x^2+6x^3). - Tom Copeland, Dec 11 2016

A049458 Generalized Stirling number triangle of first kind.

Original entry on oeis.org

1, -3, 1, 12, -7, 1, -60, 47, -12, 1, 360, -342, 119, -18, 1, -2520, 2754, -1175, 245, -25, 1, 20160, -24552, 12154, -3135, 445, -33, 1, -181440, 241128, -133938, 40369, -7140, 742, -42, 1, 1814400, -2592720, 1580508, -537628
Offset: 0

Views

Author

Keywords

Comments

a(n,m)= ^3P_n^m in the notation of the given reference with a(0,0) := 1. The monic row polynomials s(n,x) := sum(a(n,m)*x^m,m=0..n) which are s(n,x)= product(x-(3+k),k=0..n-1), n >= 1 and s(0,x)=1 satisfy s(n,x+y) = sum(binomial(n,k)*s(k,x)*S1(n-k,y),k=0..n), with the Stirling1 polynomials S1(n,x)=sum(A008275(n,m)*x^m, m=1..n) and S1(0,x)=1.
In the umbral calculus (see the S. Roman reference given in A048854) the s(n,x) polynomials are called Sheffer polynomials for (exp(3*t),exp(t)-1).
See A143492 for the unsigned version of this array and A143495 for the inverse. - Peter Bala, Aug 25 2008

Examples

			1;
-3, 1;
12, -7, 1;
-60, 47, -12, 1;
360, -342, 119, -18, 1;
s(2,x) = 12-7*x+x^2. S1(2,x) = -x+x^2 (Stirling1 polynomial).
		

References

  • Mitrinovic, D. S.; Mitrinovic, R. S.; Tableaux d'une classe de nombres relies aux nombres de Stirling. Univ. Beograd. Pubi. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 1962, 77 pp.

Crossrefs

Unsigned column sequences are: A001710-A001714. Row sums (signed triangle): (n+1)!*(-1)^n. Row sums (unsigned triangle): A001715(n+3).
A143492, A143495. - Peter Bala, Aug 25 2008

Programs

  • Haskell
    a049458 n k = a049458_tabl !! n !! k
    a049458_row n = a049458_tabl !! n
    a049458_tabl = map fst $ iterate (\(row, i) ->
       (zipWith (-) ([0] ++ row) $ map (* i) (row ++ [0]), i + 1)) ([1], 3)
    -- Reinhard Zumkeller, Mar 11 2014
  • Maple
    A049458_row := n -> seq((-1)^(n-k)*coeff(expand(pochhammer(x+3, n)), x, k), k=0..n): seq(print(A049458_row(n)),n=0..8); # Peter Luschny, May 16 2013
  • Mathematica
    t[n_, k_] := (-1)^(n - k)*Coefficient[ Pochhammer[x + 3, n], x, k]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 17 2013, after Peter Luschny *)

Formula

a(n, m)= a(n-1, m-1) - (n+2)*a(n-1, m), n >= m >= 0; a(n, m) := 0, n
Triangle (signed) = [ -3, -1, -4, -2, -5, -3, -6, -4, -7, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...]; triangle (unsigned) = [3, 1, 4, 2, 5, 3, 6, 4, 7, 5, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...]; where DELTA is Deléham's operator defined in A084938 (unsigned version in A143492).
E.g.f.: (1+y)^(x-3). - Vladeta Jovovic, May 17 2004
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then T(n,i) = f(n,i,3), for n=1,2,...;i=0...n. - Milan Janjic, Dec 21 2008

Extensions

Second formula corrected by Philippe Deléham, Nov 09 2008

A143498 Triangle of unsigned 3-Lah numbers.

Original entry on oeis.org

1, 6, 1, 42, 14, 1, 336, 168, 24, 1, 3024, 2016, 432, 36, 1, 30240, 25200, 7200, 900, 50, 1, 332640, 332640, 118800, 19800, 1650, 66, 1, 3991680, 4656960, 1995840, 415800, 46200, 2772, 84, 1, 51891840, 69189120, 34594560, 8648640, 1201200, 96096, 4368
Offset: 3

Author

Peter Bala, Aug 25 2008

Keywords

Comments

For a signed version of this triangle see A062138. This is the case r = 3 of the unsigned r-Lah numbers L(r;n,k). The unsigned 3-Lah numbers count the partitions of the set {1,2,...,n} into k ordered lists with the restriction that the elements 1, 2 and 3 belong to different lists. For other cases see A105278 (r = 1), A143497 (r = 2 and comments on the general case) and A143499 (r = 4).
The unsigned 3-Lah numbers are related to the 3-Stirling numbers: the lower triangular array of unsigned 3-Lah numbers may be expressed as the matrix product St1(3) * St2(3), where St1(3) = A143492 and St2(3) = A143495 are the arrays of 3-Stirling numbers of the first and second kind respectively. An alternative factorization for the array is as St1 * P^4 * St2, where P denotes Pascal's triangle, A007318, St1 is the triangle of unsigned Stirling numbers of the first kind, abs(A008275) and St2 denotes the triangle of Stirling numbers of the second kind, A008277.

Examples

			Triangle begins
n\k|......3......4......5......6......7......8
==============================================
3..|......1
4..|......6......1
5..|.....42.....14......1
6..|....336....168.....24......1
7..|...3024...2016....432.....36......1
8..|..30240..25200...7200....900.....50......1
...
T(4,3) = 6. The partitions of {1,2,3,4} into 3 ordered lists, such that the elements 1, 2 and 3 lie in different lists, are: {1}{2}{3,4} and {1}{2}{4,3}, {1}{3}{2,4} and {1}{3}{4,2}, {2}{3}{1,4} and {2}{3}{4,1}.
		

Crossrefs

Cf. A001725 (column 3), A007318, A008275, A008277, A062138, A062148 - A062152 (column 4 to column 8), A062191 (alt. row sums), A062192 (row sums), A105278 (unsigned Lah numbers), A143492, A143495, A143497, A143499.

Programs

  • Magma
    /* As triangle */ [[Factorial(n-3)/Factorial(k-3)*Binomial(n+2, k+2): k in [3..n]]: n in [3.. 15]]; // Vincenzo Librandi, Nov 27 2018
  • Maple
    with combinat: T := (n, k) -> (n-3)!/(k-3)!*binomial(n+2,k+2): for n from 3 to 12 do seq(T(n, k), k = 3..n) end do;
  • Mathematica
    T[n_, k_] := (n-3)!/(k-3)!*Binomial[n+2, k+2]; Table[T[n, k], {n, 3, 10}, {k, 3, n}] // Flatten (* Amiram Eldar, Nov 26 2018 *)

Formula

T(n,k) = (n-3)!/(k-3)!*binomial(n+2,k+2) for n,k >= 3.
Recurrence: T(n,k) = (n+k-1)*T(n-1,k) + T(n-1,k-1) for n,k >= 3, with the boundary conditions: T(n,k) = 0 if n < 3 or k < 3; T(3,3) = 1.
E.g.f. for column k: Sum_{n >= k} T(n,k)*t^n/(n-3)! = 1/(k-3)!*t^k/(1-t)^(k+3) for k >= 3.
E.g.f: Sum_{n = 3..inf} Sum_{k = 3..n} T(n,k)*x^k*t^n/(n-3)! = (x*t)^3/(1-t)^6*exp(x*t/(1-t)) = (x*t)^3*(1 + (6+x)*t +(42+14*x+x^2)*t^2/2! + ... ).
Generalized Lah identity: (x+5)*(x+6)*...*(x+n+1) = Sum_{k = 3..n} T(n,k)*(x-1)*(x-2)*...*(x-k+3).
The polynomials 1/n!*Sum_{k = 3..n+3} T(n+3,k)*(-x)^(k-3) for n >= 0 are the generalized Laguerre polynomials Laguerre(n,5,x). See A062138.
Array = A143492 * A143495 = abs(A008275) * ( A007318 )^4 * A008277 (apply Theorem 10 of [Neuwirth]). Array equals exp(D), where D is the array with the quadratic sequence (6,14,24,36, ... ) on the main subdiagonal and zeros everywhere else.

A144697 Triangle of 3-Eulerian numbers.

Original entry on oeis.org

1, 1, 3, 1, 10, 9, 1, 25, 67, 27, 1, 56, 326, 376, 81, 1, 119, 1314, 3134, 1909, 243, 1, 246, 4775, 20420, 25215, 9094, 729, 1, 501, 16293, 115105, 248595, 180639, 41479, 2187, 1, 1012, 53388, 590764, 2048710, 2575404, 1193548, 183412, 6561
Offset: 3

Author

Peter Bala, Sep 19 2008

Keywords

Comments

This is the case r = 3 of the r-Eulerian numbers, denoted by A(r;n,k), defined as follows. Let [n] denote the ordered set {1,2,...,n} and let r be a nonnegative integer. Let Permute(n,n-r) denote the set of injective maps p:[n-r] -> [n], which we think of as permutations of n numbers taken n-r at a time. Clearly, |Permute(n,n-r)| = n!/r!. We say that the permutation p has an excedance at position i, 1 <= i <= n-r, if p(i) > i. Then the r-Eulerian number A(r;n,k) is defined as the number of permutations in Permute(n,n-r) with k excedances. Thus the 3-Eulerian numbers count the permutations in Permute(n,n-3) with k excedances (see the example section below for a numerical example).
For other cases see A008292 (r = 0 and r = 1), A144696 (r = 2), A144698 (r = 4) and A144699 (r = 5).
An alternative interpretation of the current array due to [Strosser] involves the 3-excedance statistic of a permutation (see also [Foata & Schutzenberger, Chapitre 4, Section 3]). We define a permutation p in Permute(n,n-3) to have a 3-excedance at position i (1 <= i <= n-3) if p(i) >= i + 3.
Given a permutation p in Permute(n,n-3), define ~p to be the permutation in Permute(n,n-3) that takes i to n+1 - p(n-i-2). The map ~ is a bijection of Permute(n,n-3) with the property that if p has (resp. does not have) an excedance in position i then ~p does not have (resp. has) a 3-excedance at position n-i-2. Hence ~ gives a bijection between the set of permutations with k excedances and the set of permutations with (n-k) 3-excedances. Thus reading the rows of this array in reverse order gives a triangle whose entries count the permutations in Permute(n,n-3) with k 3-excedances.
Example: Represent a permutation p:[n-3] -> [n] in Permute(n,n-3) by its image vector (p(1),...,p(n-3)). In Permute(10,7) the permutation p = (1,2,4,10,3,6,5) does not have an excedance in the first two positions (i = 1 and 2) or in the final three positions (i = 5, 6 and 7). The permutation ~p = (6,5,8,1,7,9,10) has 3-excedances only in the first three positions and the final two positions.

Examples

			Triangle begins
=================================================
n\k|..0......1......2......3......4......5......6
=================================================
3..|..1
4..|..1......3
5..|..1.....10......9
6..|..1.....25.....67.....27
7..|..1.....56....326....376.....81
8..|..1....119...1314...3134...1909....243
9..|..1....246...4775..20420..25215...9094....729
...
T(5,1) = 10: We represent a permutation p:[n-3] -> [n] in Permute(n,n-3) by its image vector (p(1),...,p(n-3)). The 10 permutations in Permute(5,2) having 1 excedance are (1,3), (1,4), (1,5), (3,2), (4,2), (5,2), (2,1), (3,1), (4,1) and (5,1).
		

References

  • R. Strosser, Séminaire de théorie combinatoire, I.R.M.A., Universite de Strasbourg, 1969-1970.

Crossrefs

Cf. A001715 (row sums), A000244 (right diagonal).

Programs

  • Magma
    m:=3; [(&+[(-1)^(k-j)*Binomial(n+1,k-j)*Binomial(j+m,m-1)*(j+1)^(n-m+1): j in [0..k]])/m: k in [0..n-m], n in [m..13]]; // G. C. Greubel, Jun 04 2022
    
  • Maple
    with(combinat):
    T:= (n,k) -> 1/3!*add((-1)^(k-j)*binomial(n+1,k-j)*(j+1)^(n-2)*(j+2)*(j+3),j = 0..k):
    for n from 3 to 11 do
    seq(T(n,k),k = 0..n-3)
    end do;
  • Mathematica
    T[n_, k_] /; 0 < k <= n-3 := T[n, k] = (k+1) T[n-1, k] + (n-k) T[n-1, k-1];
    T[, 0] = 1; T[, _] = 0;
    Table[T[n, k], {n, 3, 11}, {k, 0, n-3}] // Flatten (* Jean-François Alcover, Nov 11 2019 *)
  • SageMath
    m=3 # A144697
    def T(n,k): return (1/m)*sum( (-1)^(k-j)*binomial(n+1,k-j)*binomial(j+m,m-1)*(j+1)^(n-m+1) for j in (0..k) )
    flatten([[T(n,k) for k in (0..n-m)] for n in (m..13)]) # G. C. Greubel, Jun 04 2022

Formula

T(n,k) = (1/3!)*Sum_{j = 0..k} (-1)^(k-j)*binomial(n+1,k-j)*(j+1)^(n-2)*(j+2)*(j+3);
T(n,n-k) = (1/3!)*Sum_{j = 3..k} (-1)^(k-j)*binomial(n+1,k-j)*j^(n-2)*(j-1)*(j-2).
Recurrence relation:
T(n,k) = (k+1)*T(n-1,k) + (n-k)*T(n-1,k-1) with boundary conditions T(n,0) = 1 for n >= 3, T(3,k) = 0 for k >= 1. Special cases: T(n,n-3) = 3^(n-3); T(n,n-4) = A086443 (n-2).
E.g.f. (with suitable offsets): (1/3)*((1 - x)/(1 - x*exp(t - t*x)))^3 = 1/3 + x*t + (x + 3*x^2)*t^2/2! + (x + 10*x^2 + 9*x^3)*t^3/3! + ... .
The row generating polynomials R_n(x) satisfy the recurrence R_(n+1)(x) = (n*x+1)*R_n(x) + x*(1-x)*d/dx(R_n(x)) with R_3(x) = 1. It follows that the polynomials R_n(x) for n >= 4 have only real zeros (apply Corollary 1.2. of [Liu and Wang]).
The (n+2)-th row generating polynomial = (1/3!)*Sum_{k = 1..n} (k+2)!*Stirling2(n,k)*x^(k-1)*(1-x)^(n-k).
For n >= 3,
(1/3)*(x*d/dx)^(n-2) (1/(1-x)^3) = (x/(1-x)^(n+1)) * Sum_{k = 0..n-3} T(n,k)*x^k,
(1/3)*(x*d/dx)^(n-2) (x^3/(1-x)^3) = (1/(1-x)^(n+1)) * Sum_{k = 3..n} T(n,n-k)*x^k,
(1/(1-x)^(n+1)) * Sum_{k = 0..n-3} T(n,k)*x^k = (1/3!) * Sum_{m >= 0} (m+1)^(n-2)*(m+2)*(m+3)*x^m,
(1/(1-x)^(n+1)) * Sum_{k = 3..n} T(n,n-k)*x^k = (1/3!) * Sum_{m >= 3} m^(n-2)*(m-1)*(m-2)*x^m.
Worpitzky-type identities:
Sum_{k = 0..n-3} T(n,k)* binomial(x+k,n) = (1/3!)*x^(n-2)*(x-1)*(x-2);
Sum_{k = 3..n} T(n,n-k)* binomial(x+k,n) = (1/3!)*(x+1)^(n-2)*(x+2)*(x+3).
Relation with Stirling numbers (Frobenius-type identities):
T(n+2,k-1) = (1/3!) * Sum_{j = 0..k} (-1)^(k-j)* (j+2)!* binomial(n-j,k-j)*Stirling2(n,j) for n,k >= 1;
T(n+2,k-1) = (1/3!) * Sum_{j = 0..n-k} (-1)^(n-k-j)* (j+2)!* binomial(n-j,k)*S(3;n+3,j+3) for n,k >= 1 and
T(n+3,k) = (1/3!) * Sum_{j = 0..n-k} (-1)^(n-k-j)*(j+3)!* binomial(n-j,k)*S(3;n+3,j+3) for n,k >= 0, where S(3;n,k) denotes the 3-Stirling numbers A143495(n,k).
The row polynomials of this array are related to the 2-Eulerian polynomials (see A144696). For example, (1/3)*x*d/dx (x^3*(1 + 7*x + 4*x^2)/(1-x)^5) = x^3*(1 + 10*x + 9*x^2)/(1-x)^6 and (1/3)*x*d/dx (x^3*(1 + 18*x + 33*x^2 + 8*x^3)/(1-x)^6) = x^3*(1 + 25*x + 67*x^2 + 27*x^3)/(1-x)^7.
For n >=3, the shifted row polynomial t*R(n,t) = (1/3)*D^(n-2)(f(x,t)) evaluated at x = 0, where D is the operator (1-t)*(1+x)*d/dx and f(x,t) = (1+x*t/(t-1))^(-3). - Peter Bala, Apr 22 2012

A143493 Unsigned 4-Stirling numbers of the first kind.

Original entry on oeis.org

1, 4, 1, 20, 9, 1, 120, 74, 15, 1, 840, 638, 179, 22, 1, 6720, 5944, 2070, 355, 30, 1, 60480, 60216, 24574, 5265, 625, 39, 1, 604800, 662640, 305956, 77224, 11515, 1015, 49, 1, 6652800, 7893840, 4028156, 1155420, 203889, 22680, 1554, 60, 1, 79833600
Offset: 4

Author

Peter Bala, Aug 20 2008

Keywords

Comments

See A049459 for a signed version of the array. The unsigned 4-Stirling numbers of the first kind count the permutations of the set {1,2,...,n} into k disjoint cycles, with the restriction that the elements 1, 2, 3 and 4 belong to distinct cycles. This is the case r = 4 of the unsigned r-Stirling numbers of the first kind. For other cases see abs(A008275) (r = 1), A143491 (r = 2) and A143492 (r = 3). See A143496 for the corresponding triangle of 4-Stirling numbers of the second kind.
The theory of r-Stirling numbers of both kinds is developed in [Broder]. For details of the related 4-Lah numbers see A143499.
With offset n=0 and k=0, this is the Sheffer triangle (1/(1-x)^4,-log(1-x)) (in the umbral notation of S. Roman's book this would be called Sheffer for (exp(-4*t),1-exp(-t))). See the e.g.f given below. Compare also with the e.g.f. for the signed version A049459. - Wolfdieter Lang, Oct 10 2011
With offset n=0 and k=0: triangle T(n,k), read by rows, given by (4,1,5,2,6,3,7,4,8,5,9,6,...) DELTA (1,0,1,0,1,0,1,0,1,0,1,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 31 2011

Examples

			Triangle begins
  n\k|     4     5     6     7     8     9
  ========================================
  4  |     1
  5  |     4     1
  6  |    20     9     1
  7  |   120    74    15     1
  8  |   840   638   179    22     1
  9  |  6720  5944  2070   355    30     1
  ...
T(6,5) = 9. The 9 permutations of {1,2,3,4,5,6} with 5 cycles such that 1, 2, 3 and 4 belong to different cycles are: (1,5)(2)(3)(4)(6), (1,6)(2)(3)(4)(5), (2,5)(1)(3)(4)(6), (2,6)(1)(3)(4)(5), (3,5)(1)(2)(4)(6), (3,6)(1)(2)(4)(5), (4,5)(1)(2)(3)(6), (4,6)(1)(2)(3)(5) and (5,6)(1)(2)(3)(4).
		

Crossrefs

Cf. A001715 - A001719 (column 4 - column 8), A001720 (row sums), A008275, A049459 (signed version), A143491, A143492, A143496, A143499.

Programs

  • Maple
    with combinat: T := (n, k) -> (n-4)! * add(binomial(n-j-1,3)*abs(stirling1(j,k-4))/j!,j = k-4..n-4): for n from 4 to 13 do seq(T(n, k), k = 4..n) end do;

Formula

T(n,k) = (n-4)! * Sum_{j = k-4 .. n-4} C(n-j-1,3)*|stirling1(j,k-4)|/j!.
Recurrence relation: T(n,k) = T(n-1,k-1) + (n-1)*T(n-1,k) for n > 4, with boundary conditions: T(n,3) = T(3,n) = 0 for all n; T(4,4) = 1; T(4,k) = 0 for k > 4.
Special cases:
T(n,4) = (n-1)!/3!.
T(n,5) = (n-1)!/3!*(1/4 + ... + 1/(n-1)).
T(n,k) = sum {4 <= i_1 < ...< i_(n-k) < n} (i_1*i_2* ...*i_(n-k)). For example, T(7,5) = Sum_{4 <= i < j < 7} (i*j) = 4*5 + 4*6 + 5*6 = 74.
Row g.f.: Sum_{k = 4..n} T(n,k)*x^k = x^4*(x+4)*(x+5)* ... *(x+n-1).
E.g.f. for column (k+4): Sum_{n = k..inf} T(n+4,k+4)*x^n/n! = 1/k!*1/(1-x)^4 * (log(1/(1-x)))^k.
E.g.f.: (1/(1-t))^(x+4) = Sum_{n = 0..inf} Sum_{k = 0..n} T(n+4,k+4)*x^k*t^n/n! = 1 + (4+x)*t/1! + (20+9*x+x^2)*t^2/2! + .... This array is the matrix product St1 * P^3, where St1 denotes the lower triangular array of unsigned Stirling numbers of the first kind, abs(A008275) and P denotes Pascal's triangle, A007318. The row sums are n!/4! ( A001720 ). The alternating row sums are (n-2)!/2!.
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then T(n+4,i) = |f(n,i,3)|, for n=1,2,...;i=0...n. - Milan Janjic, Dec 21 2008

A295226 Sum of antidiagonals of triangle of 3-Stirling numbers of the first kind.

Original entry on oeis.org

0, 0, 0, 1, 3, 13, 67, 408, 2874, 23034, 207185, 2067928, 22688218, 271456443, 3518003749, 49097940464, 734192914717, 11711708730460, 198519682344141, 3563360442079351, 67522465963443411, 1346990675228935159, 28217627569071978376, 619338933079584448848
Offset: 3

Author

Eric M. Schmidt, Nov 18 2017

Keywords

Formula

a(n) = Sum_{k=0..[n/2]} A143492(n-k,k).
Showing 1-7 of 7 results.